Cu/PMMA复合材料的声速与冲击响应行为

罗国强 黄志宏 张睿智 孙一 张建 沈强

罗国强, 黄志宏, 张睿智, 孙一, 张建, 沈强. Cu/PMMA复合材料的声速与冲击响应行为[J]. 高压物理学报, 2021, 35(1): 011301. doi: 10.11858/gywlxb.20200599
引用本文: 罗国强, 黄志宏, 张睿智, 孙一, 张建, 沈强. Cu/PMMA复合材料的声速与冲击响应行为[J]. 高压物理学报, 2021, 35(1): 011301. doi: 10.11858/gywlxb.20200599
LUO Guoqiang, HUANG Zhihong, ZHANG Ruizhi, SUN Yi, ZHANG Jian, SHEN Qiang. Sound Velocity and Shock Response Behavior of Cu/PMMA Composites[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011301. doi: 10.11858/gywlxb.20200599
Citation: LUO Guoqiang, HUANG Zhihong, ZHANG Ruizhi, SUN Yi, ZHANG Jian, SHEN Qiang. Sound Velocity and Shock Response Behavior of Cu/PMMA Composites[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011301. doi: 10.11858/gywlxb.20200599

Cu/PMMA复合材料的声速与冲击响应行为

doi: 10.11858/gywlxb.20200599
基金项目: 国家自然科学基金重点项目(51932006);湖北省技术创新专项重大项目(2019AFA176)
详细信息
    作者简介:

    罗国强(1980-),男,博士,教授,主要从事先进复合材料研究. E-mail:luogq@whut.edu.cn

    通讯作者:

    沈 强(1970-),男,博士,教授,主要从事功能复合材料研究. E-mail:sqqf@263.net

  • 中图分类号: O521.2

Sound Velocity and Shock Response Behavior of Cu/PMMA Composites

  • 摘要: 基于熔融共混法,制备了一系列不同配比且随机分散的Cu/PMMA复合材料,重点研究了Cu颗粒含量对PMMA基体声速与冲击压缩行为的影响。超声测试结果表明,随着Cu颗粒含量的增加,声波的衰减使材料的横、纵波声速皆呈缓慢下降趋势,由此使体积声速亦呈减小趋势。基于平板撞击实验,获得了冲击压力在1.1~6.0 GPa范围内各复合材料的冲击波速度-粒子速度方程。Cu/PMMA复合材料声阻抗的升高使Hugoniot参数λ逐渐增大,而零压体积声速减小,与常压体积声速所表现出的变化趋势一致。结合已有的压力-粒子速度关系模型,对各材料的压力-粒子速度曲线进行了讨论。在此基础上,归纳出一种基于上述模型的用于预测金属粒子填充聚合物基复合材料压力-密度关系的可靠方法。

     

  • 图  原料Cu粉的粒径分布

    Figure  1.  Particle size distribution of Cu powder

    图  Cu/PMMA体系复合材料的制备流程(a)和40%Cu/PMMA实物(b)

    Figure  2.  Preparation of Cu/PMMA composites (a) and picture of actural 40%Cu/PMMA (b)

    图  超声测试示意图

    Figure  3.  Schematic illustration of ultrasonic testing

    图  正向碰撞实验原理示意图

    Figure  4.  Schematic of the principle for plate impact experiment

    图  Cu/PMMA复合材料的断口形貌

    Figure  5.  Fracture morphology of Cu/PMMA composites

    图  Cu/PMMA复合材料的密度

    Figure  6.  Density of Cu/PMMA composites

    图  声速随Cu颗粒含量增加的变化趋势

    Figure  7.  Trend of sound velocity with the increase of Cu particle content

    图  声波在Cu/PMMA复合材料中的传播

    Figure  8.  Sound wave propagated in Cu/PMMA composites

    图  体积声速和波阻抗随Cu颗粒含量的变化

    Figure  9.  Bulk sound velocity and wave impedance varying with Cu particle content

    图  10  Cu/PMMA复合材料的冲击波速度-粒子速度曲线

    Figure  10.  Shock wave velocity-particle velocity curve of Cu/PMMA composites

    图  11  常压体积声速c与零压体积声速c0的对比

    Figure  11.  Comparison of atmospheric bulk sound speed c and zero-pressure bulk sound speed c0

    图  12  冲击波在颗粒填充复合材料中的传播

    Figure  12.  Shock wave propagated in particle-filled composites

    图  13  Cu/PMMA复合材料基于Li模型的压力

    Figure  13.  Pressure of Cu/PMMA composites based on Li model

    图  14  Cu/PMMA复合材料的p-$\;\rho $关系曲线及其测量值

    Figure  14.  p-$\;\rho $ curves of Cu/PMMA composite material and its measured value

    图  15  基于复合材料组成所获得的p-$\;\rho $预测曲线

    Figure  15.  Predicted p-$\;\rho $ curves obtained by composite material composition

    表  1  Cu/PMMA复合材料的弹性力学参数

    Table  1.   Elastic mechanical parameters of Cu/PMMA composites

    wCu/%K/GPaG/GPaE/GPa
    105.662.336.17
    255.802.436.40
    406.242.717.09
    607.033.198.32
    下载: 导出CSV

    表  2  Cu/PMMA复合材料的击靶参数

    Table  2.   Target parameters of Cu/PMMA composites

    wCu/%W/(m·s−1)d/mmD/(km·s−1)u/(km·s−1)
    103281.8142.9880.296
    4621.8023.0460.416
    6211.8143.1610.558
    9021.8033.7250.797
    403131.7542.6620.276
    462 1.742 2.702 0.407
    6251.7512.8910.546
    9011.7423.3800.773
    603071.9132.4370.264
    4461.8932.5530.381
    6401.8912.8360.539
    8971.9183.2520.741
    下载: 导出CSV

    表  3  Cu/PMMA复合材料的Li模型参数

    Table  3.   Impact parameters corresponding to Li model for Cu/PMMA composites

    wCu/%W/(m·s−1)p1/GPap2/GPap/GPa
    103281.057.891.14
    4621.5111.311.64
    6212.1015.742.28
    9023.5326.493.81
    403130.876.561.33
    4621.319.811.99
    6251.8814.092.86
    9013.1123.324.73
    603070.775.741.59
    4461.168.682.40
    6401.8213.643.77
    8972.8721.505.94
    下载: 导出CSV
  • [1] MEYERS M A. Dynamic behavior of materials [M]. New York: Wiley, 1994: 1−5.
    [2] ZHANG Y N, ZHENG L X, SUN G Z, et al. Failure mechanisms of carbon nanotube fibers under different strain rates [J]. Carbon, 2012, 50(8): 2887–2893. doi: 10.1016/j.carbon.2012.02.057
    [3] BIE B X, HAN J H, LU L, et al. Dynamic fracture of carbon nanotube/epoxy composites under high strain-rate loading [J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 282–288. doi: 10.1016/j.compositesa.2014.10.001
    [4] YASHIRO S, OGI K, NAKAMURA T, et al. Characterization of high-velocity impact damage in CFRP laminates: Part I–experiment [J]. Composites Part A: Applied Science and Manufacturing, 2013, 48: 93–100. doi: 10.1016/j.compositesa.2012.12.015
    [5] YASHIRO S, OGI K, YOSHIMURA A, et al. Characterization of high-velocity impact damage in CFRP laminates: Part Ⅱ - prediction by smoothed particle hydrodynamics [J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 308–318. doi: 10.1016/j.compositesa.2013.04.012
    [6] XIE W B, ZHANG W, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere [J]. Composites Part B: Engineering, 2016, 99: 483–493. doi: 10.1016/j.compositesb.2016.06.020
    [7] GAY E, BERTHE L, BOUSTIE M, et al. Study of the response of CFRP composite laminates to a laser-induced shock [J]. Composites Part B: Engineering, 2014, 64: 108–115. doi: 10.1016/j.compositesb.2014.04.004
    [8] GIANNAROS E, KOTZAKOLIOS A, KOSTOPOULOS V, et al. Hypervelocity impact response of CFRP laminates using smoothed particle hydrodynamics method: implementation and validation [J]. International Journal of Impact Engineering, 2019, 123: 56–69. doi: 10.1016/j.ijimpeng.2018.09.016
    [9] CHEN X, LI Y L, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. doi: 10.1016/j.carbon.2013.04.073
    [10] LONG X J, LI B, WANG L, et al. Shock response of Cu/graphene nanolayered composites [J]. Carbon, 2016, 103: 457–463. doi: 10.1016/j.carbon.2016.03.039
    [11] XIE W B, ZHANG W, GUO L C, et al. The shock and spallation behavior of a carbon fiber reinforced polymer composite [J]. Composites Part B: Engineering, 2018, 153: 176–183. doi: 10.1016/j.compositesb.2018.07.047
    [12] DANDEKAR D P, HALL C A, CHHABILDAS L C, et al. Shock response of a glass-fiber-reinforced polymer composite [J]. Composite Structures, 2003, 61(1/2): 51–59. doi: 10.1016/S0263-8223(03)00031-X
    [13] JIAN W R, LONG X J, TANG M X, et al. Deformation and spallation of shock-loaded graphene: effects of orientation and grain boundary [J]. Carbon, 2018, 132: 520–528. doi: 10.1016/j.carbon.2018.02.070
    [14] MENG Z X, HAN J L, QIN X, et al. Spalling-like failure by cylindrical projectiles deteriorates the ballistic performance of multi-layer graphene plates [J]. Carbon, 2018, 126: 611–619. doi: 10.1016/j.carbon.2017.10.068
    [15] TIAN Y, ZHANG H, ZHAO J, et al. High strain rate compression of epoxy based nanocomposites [J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 62–70. doi: 10.1016/j.compositesa.2016.06.008
    [16] REN S Y, ZHANG Q M, WU Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124–137. doi: 10.1016/j.ijimpeng.2019.04.011
    [17] RAULS M B, RAVICHANDRAN G. Structure of shock waves in particulate composites [J]. Journal of Applied Physics, 2020, 127(6): 065902.
    [18] LI J B, LI W B, WANG X M, et al. Shock response and prediction model of equation of state for aluminum powder/rubber matrix composites [J]. Materials and Design, 2020, 191: 108632. doi: 10.1016/j.matdes.2020.108632
    [19] BEK Y K, HAMDIA K M, RABCZUK T, et al. Micromechanical model for polymeric nano-composites material based on SBFEM [J]. Composite Structures, 2018, 194: 516–526. doi: 10.1016/j.compstruct.2018.03.064
    [20] REN H L, LI W, NING J G, et al. Effect of temperature on the impact ignition behavior of the aluminum/polytetrafluoroethylene reactive material under multiple pulse loading [J]. Materials and Design, 2020, 189: 108522.
    [21] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials and Design, 2020, 192: 108722.
    [22] 胡昌明, 李雪梅, 彭建祥, 等. 冲击载荷下K9玻璃的光学特性 [J]. 高压物理学报, 2017, 31(5): 573–578. doi: 10.11858/gywlxb.2017.05.010

    HU C M, LI X M, PENG J X, et al. Optical properties of K9 glass under shock loading [J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 573–578. doi: 10.11858/gywlxb.2017.05.010
    [23] 谭华. 实验冲击波物理[M]. 北京: 国防工业出版社, 2018: 281−304.

    TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 281−304.
    [24] CARTER W J, MARSH S P. Hugoniot equation of state of polymers [R]. New Mexico: Los Alamos National Laboratory, 1995.
    [25] JORDAN J L, CASEM D, ZELLNER M. Shock response of polymethylmethacrylate [J]. Journal of Dynamic Behavior of Materials, 2016, 2(3): 372–378. doi: 10.1007/s40870-016-0071-5
    [26] TSOU F K, CHOU P C. The control-volume approach to hugoniot of macroscopically homogeneous composites [J]. Journal of Composite Materials, 1970, 4(4): 526–537. doi: 10.1177/002199837000400408
    [27] TORVIK P J. Shock propagation in a composite material [J]. Journal of Composite Materials, 1970, 4(3): 296–309. doi: 10.1177/002199837000400302
    [28] 经福谦. 实验物态方程导引[M]. 2版. 北京: 科学出版社, 1999: 95−99.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 95−99.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  6877
  • HTML全文浏览量:  2887
  • PDF下载量:  61
出版历程
  • 收稿日期:  2020-07-31
  • 修回日期:  2020-08-07
  • 发布日期:  2020-11-25

目录

    /

    返回文章
    返回