同步辐射高压衍射技术

刘景

刘景. 同步辐射高压衍射技术[J]. 高压物理学报, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586
引用本文: 刘景. 同步辐射高压衍射技术[J]. 高压物理学报, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586
LIU Jing. High Pressure Diffraction Using Synchrotron Radiation[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586
Citation: LIU Jing. High Pressure Diffraction Using Synchrotron Radiation[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050103. doi: 10.11858/gywlxb.20200586

同步辐射高压衍射技术

doi: 10.11858/gywlxb.20200586
基金项目: 国家自然科学基金(U1530134, 10875142, 11075175);中国科学院知识创新重要方向项目(KJCX2-SW-N20, KJCX2-SW-N03);中国科学院大型科研装备研制项目(SYGNS04)
详细信息
    作者简介:

    刘 景(1950-),女,本科,研究员,主要从事同步辐射高压实验技术及其应用研究. E-mail:Liuj@ihep.ac.cn

  • 中图分类号: O434.19; O521.3

High Pressure Diffraction Using Synchrotron Radiation

  • 摘要: 同步辐射光源具有宽光谱、高亮度、高准直等优异性能,被广泛地用于高压科学研究。在依托同步辐射光源所发展的诸多高压研究手段中,X射线衍射是最基本的也是应用最多的实验技术之一。本文简单介绍了同步辐射光的独特性能和光源的基本构成,以及同步辐射光束线和实验站的基本概念。针对基于金刚石对顶砧(DAC)的高压X射线衍射技术,阐述了多种测试方法的原理和应用,包括粉末衍射、单晶衍射、多晶衍射、径向衍射、激光加温衍射以及快速加载衍射等。对北京同步辐射装置(BSRF)4W2高压衍射线站所提供的同步辐射光品质、X射线微聚焦能力、多种衍射方法以及新近发展的实验技术进行了较详细的描述,并展望了高能同步辐射光源(HEPS)的建设给高压科学研究带来的机遇。

     

  • 图  同步辐射产生原理和光源结构

    Figure  1.  Schematic diagram of synchrotron radiation and light source structure

    图  同步辐射光谱分布形状[3]

    Figure  2.  Shape of synchrotron radiation spectrum distribution[3]

    图  接近光速的电子偏转运动时产生辐射的角发散

    Figure  3.  Radiation angular divergence of relativistic electron in circular motion

    图  同步辐射光源和常规X光源的光谱亮度[4]

    Figure  4.  Spectral brightness of synchrotron radiation and conventional sources[4]

    图  BSRF各光源点的光谱亮度[4]

    Figure  5.  Spectral brightness of source points in BSRF[4]

    图  BSRF 光束线分布[1]

    Figure  6.  Beamline distribution at BSRF[1]

    图  EDXD原理示意图

    Figure  7.  Schematic of high pressure EDXD

    图  高压ADXD原理示意图

    Figure  8.  Schematic of high pressure ADXD

    图  高压单晶衍射原理示意图

    Figure  9.  Schematic of single crystal XRD

    图  10  高压多晶衍射实验方法和典型的多晶衍射谱[12]

    Figure  10.  Multigrain XRD method in the DAC and typical spotty diffraction pattern [12]

    图  11  DAC样品在单轴加载下的应力状态

    Figure  11.  Stress state of the sample in the DAC under uniaxial loading

    图  12  DAC轴向X射线衍射示意图

    Figure  12.  Schematic geometry of conventional XRD

    图  13  采用EDXD模式的DAC径向衍射几何示意图

    Figure  13.  Schematic geometry of DAC radial diffraction using EDXD technique

    图  14  角色散径向衍射几何示意图

    Figure  14.  Schematic geometry of DAC radial diffraction using ADXD technique

    图  15  4W2高压线站主要系统构成

    Figure  15.  Schematic layout of 4W2 beamline and station components

    图  16  4W2扭摆磁铁的光谱分布

    Figure  16.  Spectral distribution of 4W2 Wiggler

    图  17  4W2光束线的光路图

    Figure  17.  Schematic layout of 4W2 beamline optics

    图  18  K-B微束聚焦光斑扫描结果

    Figure  18.  Micro-focusing profile of 4W2 wiggler beam

    图  19  4W2高压线站衍射系统照片

    Figure  19.  Photographs of high pressure diffraction apparatus with interchangeable detectors

    图  20  单晶实验中的X射线、样品腔和样品

    Figure  20.  X-ray spot, sample and sample chamber in single crystal experiment

    图  21  用于高压单晶XRD的HPSXD程序界面

    Figure  21.  Program interface of HPSXD for high pressure single crystal XRD

    图  22  Bohler-Almax型压砧和WC支撑座的装配

    Figure  22.  Bohler-Almax diamond and assembly with WC seat

    图  23  4W2线站EDXD模式DAC径向衍射系统:(a) $\psi $ = 0°,(b) $\psi $= 90°

    Figure  23.  Photographs of DAC radial diffraction system using EDXD technique at 4W2 station:(a) $\psi $ = 0°,(b) $\psi $ = 90°

    图  24  4W2线站DAC径向衍射系统(ADXD模式):(a)衍射几何示意图,(b)系统实物照片

    Figure  24.  Schematic geometry (a) and photographs (b) of DAC radial diffraction system using ADXD technique at 4W2 station

    图  25  4W2线站用于高压衍射的双面激光加温系统

    Figure  25.  Double-sided laser heating system for high pressure diffraction at 4W2 station

    图  26  TiO2和Mg2SiO4在激光加温实验过程中温度的变化

    Figure  26.  Temperature stabilities of TiO2 and Mg2SiO4 during the laser heating experiment

    图  27  3种不同类型dDAC结构

    Figure  27.  Drawings of the dDAC with three different designs

    图  28  快速加载驱动及原位衍射测量

    Figure  28.  Schematic layout of fast loading control and in situ diffraction measurements with dDAC

  • [1] 阎永廉. 同步辐射光束线[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 30–75.
    [2] 刘鹏, 黎忠. 同步辐射探测器[M]//麦振洪. 同步辐射光源及其应用. 北京: 科学出版社, 2013: 153–172.
    [3] WINICK H. Properties of synchrotron radiation [M]//WINICK H, DONIACH S. Synchrotron radiation research. New York: Plenum, 1980: 11–25.
    [4] 徐刚. 同步辐射光源[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 9–29.
    [5] DING Y, HASKEL D, TSENG Y C, et al. Pressure-induced magnetic transition in manganite (La0.75Ca0.25MnO3) [J]. Physical Review Letters, 2009, 102(23): 237201. doi: 10.1103/PhysRevLett.102.237201
    [6] LUO S N, JENSEN B J, HOOKS D E, et al. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source [J]. Review of Scientific Instruments, 2012, 83(7): 073903. doi: 10.1063/1.4733704
    [7] The dynamic compression sector [EB/OL].[2020-07-21].https://dcs-aps.wsu.edu/facilities/.
    [8] 刘景. X射线高压衍射实验站[M]//冼鼎昌. 北京同步辐射装置及其应用. 南宁: 广西科学技术出版社, 2016: 144–176.
    [9] LI R, LIU J, BAI L G, et al. Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition [J]. Applied Physics Letters, 2015, 107(7): 072109. doi: 10.1063/1.4929368
    [10] VAUGHAN G B M, SCHMIDT S, POULSEN H F. Multicrystal approach to crystal structure solution and refinement [J]. Zeitschrift für Kristallographie, 2004, 219(12): 813–825. doi: 10.1524/zkri.219.12.813.55870
    [11] SØRENSEN H O, SCHMIDT S, WRIGHT J P, et al. Multigrain crystallography [J]. Zeitschrift für Kristallographie, 2012, 227(1): 63–78. doi: 10.1524/zkri.2012.1438
    [12] 李蕊. 高压单晶及多晶粒衍射实验技术的发展及应用 [D]. 北京: 中国科学院大学, 2015.
    [13] LI R, LIU J, POPOV D, et al. Experimental observations of large changes in electron density distributions in β-Ge [J]. Physical Review B, 2019, 100(22): 224106. doi: 10.1103/PhysRevB.100.224106
    [14] KINSLAND G L, BASSETT W A. Modification of the diamond cell for measuring strain and the strength of materials at pressures up to 300 kilobar [J]. Review of Scientific Instruments, 1976, 47(1): 130–133. doi: 10.1063/1.1134460
    [15] SINGH A K. The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device [J]. Journal of Applied Physics, 1993, 73(9): 4278–4286. doi: 10.1063/1.352809
    [16] SINGH A K, BALASINGH C, MAO H K, et al. Analysis of lattice strains measured under non-hydrostatic pressure [J]. Journal of Applied Physics, 1998, 83(12): 7567–7575. doi: 10.1063/1.367872
    [17] KAVNER A. Elasticity and strength of hydrous ringwoodite at high pressure [J]. Earth and Planetary Science Letters, 2003, 214(3/4): 645–654.
    [18] MAO H K, SHU J F, SHEN G Y, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core [J]. Nature, 1998, 396(6713): 741–743. doi: 10.1038/25506
    [19] WENK H R, ISCHIA G, NISHIYAMA N, et al. Texture development and deformation mechanisms in ringwoodite [J]. Physics of the Earth and Planetary Interiors, 2005, 152(3): 191–199. doi: 10.1016/j.pepi.2005.06.008
    [20] MIYAGI L, KANITPANYACHAROEN W, KAERCHER P, et al. Slip systems in MgSiO3 post-perovskite: implications for D″ anisotropy [J]. Science, 2010, 329(5999): 1639–1641. doi: 10.1126/science.1192465
    [21] DUFFY T S, SHEN G Y, SHU J F, et al. Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa [J]. Journal of Applied Physics, 1999, 86(12): 6729–6735. doi: 10.1063/1.371723
    [22] HE D W, SHIEH S R, DUFFY T S. Strength and equation of state of boron suboxide from radial X-ray diffraction in a diamond cell under nonhydrostatic compression [J]. Physical Review B, 2004, 70(18): 184121. doi: 10.1103/PhysRevB.70.184121
    [23] CHE R Z, ZHOU L, ZHAO Y C, et al. Establishment of energy dispersive X-ray diffraction experimental system with synchrotron radiation under high pressure [J]. Chinese Science Bulletin, 1994, 39(22): 1877–1881.
    [24] 刘景, 车容钲, 赵菁, 等. 北京同步辐射装置上的高温高压实验系统 [J]. 高压物理学报, 1997, 11(Suppl): 27.
    [25] JIN X G, ZHANG H Z, CHE R Z, et al. Isothermal equations of state for nanometer and micrometer nickel powders [J]. AIP Conference Proceedings, 1998, 429(1): 99–102. doi: 10.1063/1.55629
    [26] 赵菁, 刘景, 杨洋, 等. 高压衍射实验中的同步辐射光束的定位 [J]. 高压物理学报, 1999, 13(4): 283–289. doi: 10.11858/gywlxb.1999.04.008

    ZHAO J, LIU J, YANG Y, et al. A method of locating the light spot of incidence synchrotron radiation in EDXRD experiment under high pressure [J]. Chinese Journal of High Pressure Physics, 1999, 13(4): 283–289. doi: 10.11858/gywlxb.1999.04.008
    [27] 刘景, 赵菁, 车荣钲, 等. 高压下的同步辐射能量色散粉末衍射 [J]. 高压物理学报, 2000, 14(4): 247–252. doi: 10.11858/gywlxb.2000.04.002

    LIU J, ZHAO J, CHE R Z, et al. In situ energy dispersive diffraction under high pressure using synchrotron radiation [J]. Chinese Journal of High Pressure Physics, 2000, 14(4): 247–252. doi: 10.11858/gywlxb.2000.04.002
    [28] LIU J, ZHAO J, CHE R Z, et al. Progress in high pressure EDXD system and research at Beijing Synchrotron Radiation Facility [J]. Chinese Science Bulletin, 2000, 45(18): 1659–1662. doi: 10.1007/BF02898981
    [29] LIU J, CHE R Z, ZHAO J, et al. An experimental apparatus for EDXD of high pressure specimens using synchrotron radiation at BSRF [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 1069–1072. doi: 10.1016/S0168-9002(01)00726-4
    [30] LIU J, LI X D, LI Y C. The present status of high-pressure research at Beijing Synchrotron Radiation Facility [J]. Journal of Physics: Condensed Matter, 2002, 14(44): 10505–10509. doi: 10.1088/0953-8984/14/44/323
    [31] WANG L J, CHEN L C, LI F Y, et al. Studies on CsBr with synchrotron radiation under ultrahigh pressure up to 115 GPa [J]. Chinese Physics Letters, 1998, 15(4): 284–286. doi: 10.1088/0256-307X/15/4/018
    [32] 王莉君, 陈良辰, 李凤英, 等. 超高压下CsBr的结构与相变 [J]. 高压物理学报, 1998, 12(2): 92–96. doi: 10.11858/gywlxb.1998.02.003

    WANG L J, CHEN L C, LI F Y, et al. The structure and phase transition for CsBr under ultra-high pressure [J]. Chinese Journal of High Pressure Physics, 1998, 12(2): 92–96. doi: 10.11858/gywlxb.1998.02.003
    [33] 刘景. 同步辐射材料结构分析高压技术[M]//麦振洪. 同步辐射光源及其应用. 北京: 科学出版社, 2013: 804–836.
    [34] LIU J. High pressure x-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
    [35] ENG P J, NEWVILLE M, RIVERS M L, et al. Dynamically figured Kirkpatrick Baez X-ray microfocusing optics [C]//Proceedings of SPIE3449, X-Ray Microfocusing: Applications and Techniques. San Diego, CA, United States: SPIE, 1998.
    [36] 唐玲云. 压标材料状态方程的交叉验证研究[D]. 北京: 中国科学院研究生院, 2009.
    [37] TANG L Y, LIU L, LIU J, et al. Equation of state of tantalum up to 133 GPa [J]. Chinese Physics Letters, 2010, 27(1): 016402. doi: 10.1088/0256-307X/27/1/016402
    [38] LIN C L, ZHANG Y F, LIU J, et al. Pressure-induced structural change in orthorhombic perovskite GdMnO3 [J]. Journal of Physics: Condensed Matter, 2012, 24(11): 115402. doi: 10.1088/0953-8984/24/11/115402
    [39] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术 [J]. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203

    LI X D, LI H, LI P S. High pressure single-crystal synchrotron X-ray diffraction technique [J]. Acta Physica Sinica, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [40] 李鹏善. 高压单晶衍射与电子非局域化密度研究[D]. 北京: 中国科学院高能物理研究所, 2017.
    [41] LI H, LI X D, HE M, et al. Indexing of multi-particle diffraction data in a high-pressure single-crystal diffraction experiments [J]. Journal of Applied Crystallography, 2013, 46(2): 387–390. doi: 10.1107/S0021889812051886
    [42] CHEN H, HE D, LIU J, et al. High-pressure radial X-ray diffraction study of osmium to 58 GPa [J]. The European Physical Journal B, 2010, 73(3): 321–326. doi: 10.1140/epjb/e2009-00436-4
    [43] 白利刚. 稀土氧化物的相变与压标的状态方程[D]. 北京: 中国科学院大学, 2010.
    [44] XIONG L, BAI L G, LI J. Strength and equation of state of NaCl from radial x-ray diffraction [J]. Journal of Applied Physics, 2014, 115(3): 033509. doi: 10.1063/1.4862307
    [45] 熊伦. 径向衍射技术研究材料的状态方程、强度与织构[D]. 北京: 中国科学院大学, 2014.
    [46] XIONG L, LIU J, BAI L G, et al. Radial x-ray diffraction of tungsten tetraboride to 86 GPa under nonhydrostatic compression [J]. Journal of Applied Physics, 2013, 113(3): 033507. doi: 10.1063/1.4775482
    [47] XIONG L, LIU J, ZHANG X X, et al. Radial X-ray diffraction study of the static strength and equation of state of MoB2 to 85 GPa [J]. Journal of Alloys and Compounds, 2015, 623: 442–446. doi: 10.1016/j.jallcom.2014.11.010
    [48] SHEN G Y, MAO H K, HEMLEY R J. Laser-heated diamond anvil cell technique: double-sided heating with multimode Nd: YAG laser [C]//1996 Advanced Materials ‘96—New Trends in High Pressure Research. Tsukuba, Japan: NIRM, NIRIM, 1996: 149.
    [49] SHEN G Y, RIVERS M L, WANG Y B, et al. Laser heated diamond cell system at the Advanced Photon Source for in situ x-ray measurements at high pressure and temperature [J]. Review of Scientific Instruments, 2001, 72(2): 1273–1282. doi: 10.1063/1.1343867
    [50] 李晓东. 激光加温DAC技术及晶体结构相变研究[D]. 北京: 中国科学院高能物理研究所, 2004.
    [51] 徐济安, 刘景, 肖万生, 等. 石墨在高压下的熔化实验[R]. 北京: 中国科学院高能物理研究所.
    [52] 林传龙. ABO3型稀土化合物及稀土镓石榴石的高温高压结构相变[D]. 北京: 中国科学院大学, 2013.
    [53] LIN C L, LIU J, LIN J F, et al. Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature [J]. Inorganic Chemistry, 2013, 52(1): 431–434. doi: 10.1021/ic302245x
    [54] LEE G W, EVANS W J, YOO C S. Crystallization of water in a dynamic diamond-anvil cell: evidence for ice Ⅶ-like local order in supercompressed water [J]. Physical Review B, 2006, 74(13): 134112. doi: 10.1103/PhysRevB.74.134112
    [55] JIA R, SHAO C G, SU L, et al. Rapid compression induced solidification of bulk amorphous sulfur [J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3763–3766. doi: 10.1088/0022-3727/40/12/030
    [56] LIN C L, SMITH J S, SINOGEIKIN S V, et al. Kinetics of the B1-B2 phase transition in KCl under rapid compression [J]. Journal of Applied Physics, 2016, 119(4): 045902. doi: 10.1063/1.4940771
    [57] LIN C L, YONG X, TSE J S, et al. Kinetically controlled two-step amorphization and amorphous-amorphous transition in ice [J]. Physical Review Letters, 2017, 119(13): 135701. doi: 10.1103/PhysRevLett.119.135701
    [58] EVANS W J, YOO C S, LEE G W, et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials [J]. Review of Scientific Instruments, 2007, 78(7): 073904. doi: 10.1063/1.2751409
    [59] SINOGEIKIN S V, SMITH J S, ROD E, et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cells [J]. Review of Scientific Instruments, 2015, 86(7): 072209. doi: 10.1063/1.4926892
    [60] SMITH J S, SINOGEIKIN S V, LIN C L, et al. Developments in time-resolved high pressure x-ray diffraction using rapid compression and decompression [J]. Review of Scientific Instruments, 2015, 86(7): 072208. doi: 10.1063/1.4926887
    [61] CHENG H, ZHANG J R, LI Y C, et al. Convenient dynamic loading device for studying kinetics of phase transitions and metastable phases using symmetric diamond anvil cells [J]. High Pressure Research, 2018, 38(1): 32–40. doi: 10.1080/08957959.2017.1396326
    [62] 李延春, 杨栋亮. 内部设计报告[R]. 北京: 中国科学院高能物理研究所
    [63] YANG D L, LIU J, LIN C L, et al. Phase transitions in bismuth under rapid compression [J]. Chinese Physics B, 2019, 28(3): 036201. doi: 10.1088/1674-1056/28/3/036201
  • 加载中
图(28)
计量
  • 文章访问数:  8424
  • HTML全文浏览量:  2459
  • PDF下载量:  140
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-07-14
  • 发布日期:  2020-09-25

目录

    /

    返回文章
    返回