王莲仿生梯度蜂窝的面外压缩行为

王海任 李世强 刘志芳 雷建银 李志强 王志华

王海任, 李世强, 刘志芳, 雷建银, 李志强, 王志华. 王莲仿生梯度蜂窝的面外压缩行为[J]. 高压物理学报, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
引用本文: 王海任, 李世强, 刘志芳, 雷建银, 李志强, 王志华. 王莲仿生梯度蜂窝的面外压缩行为[J]. 高压物理学报, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Out-of-Plane Compression Performance of Gradient Honeycomb Inspired by Royal Water Lily[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562
Citation: WANG Hairen, LI Shiqiang, LIU Zhifang, LEI Jianyin, LI Zhiqiang, WANG Zhihua. Out-of-Plane Compression Performance of Gradient Honeycomb Inspired by Royal Water Lily[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064204. doi: 10.11858/gywlxb.20200562

王莲仿生梯度蜂窝的面外压缩行为

doi: 10.11858/gywlxb.20200562
基金项目: 国家自然科学基金(11772216,11772215,11902215)
详细信息
    作者简介:

    王海任(1988-),男,博士研究生,主要从事冲击动力学研究. E-mail:wanghairen0125@link.tyut.edu.cn

    通讯作者:

    王志华(1977-),男,博士,教授,主要从事冲击动力学研究. E-mail:wangzh@tyut.edu.cn

  • 中图分类号: O347

Out-of-Plane Compression Performance of Gradient Honeycomb Inspired by Royal Water Lily

  • 摘要: 利用ABAQUS有限元软件对仿王莲脉络分层梯度蜂窝进行准静态与动态压缩数值模拟,分析了其准静态压缩平台应力与相对密度,以及动态压缩强度与相对密度、冲击速度之间的关系。结果表明:当冲击速度较低时(10 m/s),芯层呈现渐进压溃模式;在高速冲击下(200 m/s),芯层压溃模式与梯度分布方式密切相关,初始为渐进压溃模式,当冲击波传播至远端时,各层的压溃和密实化取决于其静态压缩强度,密实化依次出现在压缩强度较低的芯层。

     

  • 图  仿生蜂窝设计策略: (a)王莲叶脉, (b)王莲叶脉简化模型,(c)梯度蜂窝压缩模型

    Figure  1.  Bionic honeycomb design: (a) natural Royal Water Lily vein structure, (b) a simplified model of natural Royal Water Lily vein, (c) compression model of gradient honeycomb

    图  面外压缩模型

    Figure  2.  Schematic diagram of out-of-plane compression model

    图  相对密度为2%的均匀仿生蜂窝的能量验证: (a) 准静态压缩, (b) 250 m/s动态压缩

    Figure  3.  Energy verification of uniform bionic honeycomb with relative density 2%: (a) quasi-static compression, (b) 250 m/s dynamic compression

    图  均匀仿生蜂窝准静态压缩曲线与能量吸收效率

    Figure  4.  Quasi-static compression curve and energy absorption efficiency of uniform bionic honeycomb

    图  不同相对密度均匀仿生蜂窝准静态压缩曲线

    Figure  5.  Quasi-static compression curves of bionic honeycomb with different relative densities

    图  不同相对密度的m值与准静态压缩强度

    Figure  6.  m and quasi-static compressive strengths of different relative densities

    图  动态参数A的拟合曲线

    Figure  7.  Fitting curves of dynamic parameter A

    图  均匀仿生蜂窝动态压缩强度理论值与模拟值对比:(a)相对密度4%,(b)相对密度8%

    Figure  8.  Comparison between theoretical calculations and simulation values of dynamic compressive strengths ofuniform bionic honeycomb: (a) relative density 4%, (b) relative density 8%

    图  面外梯度仿生蜂窝在不同冲击速度下的压缩强度曲线与能量吸收效率曲线

    Figure  9.  Compressive strength curves and energy absorption efficiency curves of out-of-plane gradient bionic honeycombs under different impact velocities

    表  1  6060T4铝合金材料参数

    Table  1.   Material parameters of 6060T4 aluminum alloy

    $\,\rho $/(kg·m−3)E/GPa$\,\mu $$\,\sigma $cY/GPaEtan/GPa
    2 700700.30.080.07
    下载: 导出CSV

    表  2  模型类型与相关参数

    Table  2.   Model and related parameters

    ModelWall thicknesses of C2 layer/mm Relative density of out-of-plane/%
    Part 1Part 2Part 3Part 4Part 5C1C2C3
    Case 10.1900.1800.1750.1500.120258
    Case 20.1900.1800.1750.1500.120852
    UG-5%0.1900.1800.1750.1500.120555
    下载: 导出CSV
  • [1] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. doi: 10.1016/j.pmatsci.2017.04.013
    [2] ZHANG Q C, YANG X H, LI P, et al. Bioinspired engineering of honeycomb structure—using nature to inspire human innovation [J]. Progress in Materials Science, 2015, 74(1): 332–400.
    [3] WU E, JIANG W S. Axial crush of metallic honeycombs [J]. International Journal of Impact Engineering, 1997, 19(5/6): 439–456.
    [4] MAHMOUDABADI M Z, SADIGHI M. A theoretical and experimental study on metal hexagonal honeycomb crushing under quasi-static and low velocity impact loading [J]. Materials Science and Engineering A, 2011, 528(15): 4958–4966. doi: 10.1016/j.msea.2011.03.009
    [5] 王中钢, 鲁寨军. 铝蜂窝异面压缩吸能特性实验评估 [J]. 中南大学学报(自然科学版), 2013, 44(3): 1246–1251.

    WANG Z G, LU Z J. Experimental assessment on energy absorption property of aluminum honeycomb under out-of-plane compression [J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1246–1251.
    [6] TANG S, DENG Y L, JIANG K D, et al. A study on dynamic compressive mechanical behaviors of aluminum honeycombs [J]. Material Sciences, 2014, 4(3): 96–102. doi: 10.12677/MS.2014.43015
    [7] WANG Z G, LIU J F, LIU Z J, et al. Mechanical behavior of composited structure filled with tandem honeycombs [J]. Composites Part B: Engineering, 2017, 114: 128–138. doi: 10.1016/j.compositesb.2017.01.018
    [8] 甄建伟, 安振涛, 陈玉成, 等. 蜂窝增强泡沫塑料的静动态力学性能 [J]. 复合材料学报, 2011, 28(3): 223–228.

    ZHEN J W, AN Z T, CHEN Y C, et al. Quasi-static and dynamic mechanical properties of honeycomb reinforced plastic foam [J]. Acta Materiae Compositae Sinica, 2011, 28(3): 223–228.
    [9] 赵雪, 闫雷雷, 卢天健, 等. 多层金属多孔复合结构面外压缩吸能特性实验 [J]. 空军工程大学学报(自然科学版), 2017, 18(4): 28–33.

    ZHAO X, YAN L L, LU T J, et al. An experiment investigation on energy absorption of multi-layer sandwich structures with metallic corrugated cores under out-of-plane compressive load [J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(4): 28–33.
    [10] 张新春, 刘颖. 密度梯度蜂窝材料动力学性能研究 [J]. 工程力学, 2012, 29(8): 372–377. doi: 10.6052/j.issn.1000-4750.2010.12.0872

    ZHANG X C, LIU Y. Research on the dynamic crushing of honeycombs with density gradient [J]. Engineering Mechanics, 2012, 29(8): 372–377. doi: 10.6052/j.issn.1000-4750.2010.12.0872
    [11] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. doi: 10.3969/j.issn.1001-1455.2013.02.008

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. doi: 10.3969/j.issn.1001-1455.2013.02.008
    [12] 谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响 [J]. 爆炸与冲击, 2015, 35(1): 16–21. doi: 10.11883/1001-1455(2015)01-0016-06

    TAN S B, HOU B, LI Y L, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs [J]. Explosion and Shock Waves, 2015, 35(1): 16–21. doi: 10.11883/1001-1455(2015)01-0016-06
    [13] XIAO D B, DONG Z C, Li Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: experiment and finite element analysis [J]. Materials Science and Engineering A, 2019, 758(1): 163–171.
    [14] 樊喜刚, 尹西岳, 陶勇, 等. 梯度蜂窝面外动态压缩力学行为与吸能特性研究 [J]. 固体力学学报, 2015, 36(2): 114–122.

    FAN X G, YIN X Y, TAO Y, et al. Mechanical behavior and energy absorption of graded honeycomb materials under out-of-plane dynamic compression [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 114–122.
    [15] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical & Applied Mechanics Letters, 2013, 3(3): 031001.
    [16] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570.
    [17] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs—a finite element study [J]. International Journal of Impact Engineering, 2003, 28(2): 161–182. doi: 10.1016/S0734-743X(02)00056-8
    [18] QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs [J]. International Journal of Impact Engineering, 2015, 83(1): 47–58.
    [19] 陶义, 王宗彦, 王珂, 等. 基于王莲叶脉分布的塔式起重机臂架结构仿生设计 [J]. 机械设计与制造, 2017(3): 36–39. doi: 10.3969/j.issn.1001-3997.2017.03.010

    TAO Y, WANG Z Y, WANG K, et al. Structural bionic design for tower cranes boom based on King Lotus leaf vein branched structure [J]. Machinery Design & Manufacture, 2017(3): 36–39. doi: 10.3969/j.issn.1001-3997.2017.03.010
    [20] LIU Z F, HAO W Q, XIE J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns [J]. Thin-Walled Structures, 2015, 94(1): 410–423.
    [21] 朱跃峰. 基于ABAQUS的显式动力学分析方法研究 [J]. 机械设计与制造, 2015(3): 107–109. doi: 10.3969/j.issn.1001-3997.2015.03.029

    ZHU Y F. Research on analysis methods of explicit dynamics based on ABAQUS [J]. Machinery Design & Manufacture, 2015(3): 107–109. doi: 10.3969/j.issn.1001-3997.2015.03.029
    [22] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering A, 2013, 561: 352–361.
    [23] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. doi: 10.1115/1.1629109
    [24] ZHU F, WANG Z H, LU G X, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading [J]. International Journal of Impact Engineering, 2010, 37(6): 625–637. doi: 10.1016/j.ijimpeng.2009.11.003
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  7893
  • HTML全文浏览量:  3564
  • PDF下载量:  48
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-06-10

目录

    /

    返回文章
    返回