低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能

吴明宇 闫晓鹏 郭章新 崔俊杰

吴明宇, 闫晓鹏, 郭章新, 崔俊杰. 低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能[J]. 高压物理学报, 2020, 34(6): 061301. doi: 10.11858/gywlxb.20200541
引用本文: 吴明宇, 闫晓鹏, 郭章新, 崔俊杰. 低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能[J]. 高压物理学报, 2020, 34(6): 061301. doi: 10.11858/gywlxb.20200541
WU Mingyu, YAN Xiaopeng, GUO Zhangxin, CUI Junjie. Tensile Properties of Low Concentration Graphene Oxide Modified Epoxy Resin-Based Carbon Fiber Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 061301. doi: 10.11858/gywlxb.20200541
Citation: WU Mingyu, YAN Xiaopeng, GUO Zhangxin, CUI Junjie. Tensile Properties of Low Concentration Graphene Oxide Modified Epoxy Resin-Based Carbon Fiber Laminate[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 061301. doi: 10.11858/gywlxb.20200541

低浓度氧化石墨烯改性环氧树脂基碳纤维层合板的拉伸性能

doi: 10.11858/gywlxb.20200541
基金项目: 国家自然科学基金(11602160);山西省高等学校科技创新项目(2017117);西安交通大学机械结构强度与振动国家重点实验室开放课题(SV2019-KF-01);山西省“1331工程”重点创新团队项目
详细信息
    作者简介:

    吴明宇(1992-),男,硕士研究生,主要从事复合材料的力学性能研究. E-mail:ming.yu.wu@qq.com

    通讯作者:

    闫晓鹏(1976-),男,博士,副教授,主要从事塑性动力学研究. E-mail:yan.xiaopeng@qq.com

    郭章新(1983-),男,博士,副教授,主要从事复合材料及其结构的力学性能研究. E-mail:woxintanran215@163.com

  • 中图分类号: O341

Tensile Properties of Low Concentration Graphene Oxide Modified Epoxy Resin-Based Carbon Fiber Laminate

  • 摘要: 将氧化石墨烯(GO)均匀分散到环氧树脂(EP)中,采用真空辅助树脂传递模塑成型的工艺方法制备增强碳纤维(CF)复合材料,研究常温下不同浓度(质量分数为0、0.03%、0.07%和0.10%)GO改性EP/CF层合板的抗拉性能和微观胶联性能,探究低浓度GO对CF增强复合材料力学性能明显改善的阈值。实验结果表明:GO对CF增强环氧复合材料的性能有明显改善作用,与纯环氧基CF层合板相比,随着GO浓度增加,其抗拉性能随之增强;GO官能团可以提高EP基体与CF的结合程度,通过扫描电镜观察到加入GO的层合板中CF与EP的黏结更加紧密,使得啮合效果更强,从而提高了复合材料层合板的拉伸强度;低浓度GO改性下,当GO的质量分数达到0.07%时,层合板的力学性能得到明显改善。

     

  • 图  层合板制作流程

    Figure  1.  Schematic illustration of laminate manufacturing process

    图  4种GO浓度试件的断裂伸长率

    Figure  2.  Elongation at break of specimens withfour GO concentrations

    图  4种试件的应力-应变曲线

    Figure  3.  Stress-strain curves of 4 specimens

    图  试件断裂时的最大载荷

    Figure  4.  Maximum load on specimens fracture

    图  层合板断裂面纤维束SEM图像

    Figure  5.  SEM images of cross-section fiber bundle of laminates

    图  单根断裂纤维SEM图像

    Figure  6.  SEM images of single fractured fiber

    图  基体剥离侧面SEM图像

    Figure  7.  Edge morphology peeling SEM images

  • [1] HUNG P Y, LAU K T, CHENG L K, et al. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications [J]. Composites Part B: Engineering, 2018, 133: 86–90. doi: 10.1016/j.compositesb.2017.09.026
    [2] LUBINEAU G, RAHAMAN A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements [J]. Carbon, 2012, 50(7): 2377–2395. doi: 10.1016/j.carbon.2012.01.059
    [3] 首款量产碳纤维复合材料汽车面世[J]. 高科技纤维与应用, 2013, 38(5): 73.

    The first car producing carbon fiber composites [J]. Hi-Tech Fiber and Application, 2013, 38(5): 73.
    [4] HE Y X, LI Q, KUILA T, et al. Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications [J]. Composites Part B: Engineering, 2013, 44(1): 533–539. doi: 10.1016/j.compositesb.2012.03.014
    [5] TAKEDA T, TAKANO S, SHINDO Y, et al. Deformation and progressive failure behavior of woven-fabric-reinforced glass/epoxy composite laminates under tensile loading at cryogenic temperatures [J]. Composites Science and Technology, 2005, 65(11/12): 1691–1702. doi: 10.1016/j.compscitech.2005.02.009
    [6] KAMAR N T, HOSSAIN M M, KHOMENKO A, et al. Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets [J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 82–92. doi: 10.1016/j.compositesa.2014.12.010
    [7] 陈建剑, 俞科静, 钱坤, 等. 石墨烯改性环氧树脂/碳纤维复合材料拉伸性能的研究 [J]. 化工新型材料, 2012, 40(9): 63–65, 71. doi: 10.3969/j.issn.1006-3536.2012.09.021

    CHEN J J, YU K J, QIAN K, et al. Tensile property of Graphene modified epoxy resin/carbon fiber composite [J]. New Chemical Materials, 2012, 40(9): 63–65, 71. doi: 10.3969/j.issn.1006-3536.2012.09.021
    [8] 李善荣, 陆绍荣, 凌日华, 等. 氧化石墨烯/二氧化硅协同改性环氧树脂复合材料的制备及表征 [J]. 高分子材料科学与工程, 2013, 29(6): 141–144. doi: 10.16865/j.cnki.1000-7555.2013.06.034

    LI S R, LU S R, LING R H, et al. Preparation and characterization of Graphene oxide/silica collaborative modified epoxy resin composites [J]. Polymer Materials Science & Engineering, 2013, 29(6): 141–144. doi: 10.16865/j.cnki.1000-7555.2013.06.034
    [9] WANG P N, HSIEH T H, CHIANG C L, et al. Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites [J]. Journal of Nanomaterials, 2015: 7. doi: 10.1155/2015/838032
    [10] HUNG P Y, LAU K T, FOX B, et al. Effect of graphene oxide concentration on the flexural properties of CFRP at low temperature [J]. Carbon, 2019, 152: 556–564. doi: 10.1016/j.carbon.2019.06.032
    [11] 仇士龙, 王玉婷, 王成双, 等. 环氧树脂/氧化石墨纳米复合物的等温固化行为研究 [J]. 高分子学报, 2012(1): 25–32. doi: 10.3724/SP.J.1105.2012.11028

    QIU S L, WANG Y T, WANG C S, et al. Isothermal curing behaviors of epoxy/graphite oxides nanocomposites [J]. Acta Polymerica Sinica, 2012(1): 25–32. doi: 10.3724/SP.J.1105.2012.11028
    [12] HAERI S Z, RAMEZANZADEH B, ASGHARI M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: characterization of thermal properties of epoxy Nanocomposites Filled with SiO2-GO Nanohybrids [J]. Journal of Colloid and Interface Science, 2017, 493: 111–122. doi: 10.1016/j.jcis.2017.01.016
    [13] LI P P, ZHENG Y P, SHI T, et al. A solvent-free graphene oxide nanoribbon colloid as filler phase for epoxy-matrix composites with enhanced mechanical, thermal and tribological performance [J]. Carbon, 2016, 96: 40–48. doi: 10.1016/j.carbon.2015.09.035
    [14] BORTZ D R, HERAS E G, MARTIN-GULLON I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites [J]. Macromolecules, 2012, 45(1): 238–245. doi: 10.1021/ma201563k
    [15] American Society for Testing and Materials. Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D3039M-08 [S]. West Conshohocken: ASTM, 2008.
    [16] GANGULI S, ROY A K, ANDERSON D P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J]. Carbon, 2008, 46(5): 806–817. doi: 10.1016/j.carbon.2008.02.008
  • 加载中
图(7)
计量
  • 文章访问数:  6282
  • HTML全文浏览量:  2672
  • PDF下载量:  30
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-04-20
  • 发布日期:  2020-10-25

目录

    /

    返回文章
    返回