反应材料冲击压缩行为的三维细观数值模拟

杨相礼 何勇 何源 王传婷 徐涛 田伟玺 周杰

杨相礼, 何勇, 何源, 王传婷, 徐涛, 田伟玺, 周杰. 反应材料冲击压缩行为的三维细观数值模拟[J]. 高压物理学报, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539
引用本文: 杨相礼, 何勇, 何源, 王传婷, 徐涛, 田伟玺, 周杰. 反应材料冲击压缩行为的三维细观数值模拟[J]. 高压物理学报, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539
YANG Xiangli, HE Yong, HE Yuan, WANG Chuanting, XU Tao, TIAN Weixi, ZHOU Jie. 3D Mesoscopic Simulation of Shock Compression Behaviors of Reactive Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539
Citation: YANG Xiangli, HE Yong, HE Yuan, WANG Chuanting, XU Tao, TIAN Weixi, ZHOU Jie. 3D Mesoscopic Simulation of Shock Compression Behaviors of Reactive Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064203. doi: 10.11858/gywlxb.20200539

反应材料冲击压缩行为的三维细观数值模拟

doi: 10.11858/gywlxb.20200539
基金项目: 国家自然科学基金(51601095,BK20160832)
详细信息
    作者简介:

    杨相礼(1990-),男,博士研究生,主要从事含能材料高效毁伤技术研究. E-mail:xiangli_yang@njust.edu.cn

    通讯作者:

    何 勇(1964-),男,博士,教授,博士生导师,主要从事战斗部总体技术和新概念战斗部技术研究. E-mail:yonghe1964@163.com

  • 中图分类号: O521.2; TJ55

3D Mesoscopic Simulation of Shock Compression Behaviors of Reactive Materials

  • 摘要: 为研究反应材料的细观冲击响应行为,采用细观数值模拟方法对Al/PTFE(铝/聚四氟乙烯)与Al/Ni反应材料的冲击压缩行为进行了分析研究。采用球磨混合和静压方法,制备了两种反应材料试样,并使用纳米CT设备获得了材料的细观图像,借助图像处理和网格映射方法,建立了基于材料真实细观结构的三维有限元模型,计算获得的冲击Hugoniot关系与理论结果吻合较好。细观数值模拟结果表明:反应材料的冲击波阵面在细观尺度内呈不平整状态,颗粒相在冲击波作用下主要表现为沿冲击压缩方向的体积压缩和运动;在较高撞击速度下,Al/PTFE反应材料的PTFE基体将发生熔化,而Al/Ni反应材料在本研究范围内保持固态。

     

  • 图  Al/Ni反应材料试件及Al/PTFE烧结曲线[6]

    Figure  1.  Sample of Al/Ni reactive materials and the sintering profile of Al/PTFE reactive materials[6]

    图  本研究中使用的纳米CT测试系统及获得的Al/Ni与Al/PTFE反应材料的典型细观图像

    Figure  2.  Nano-CT system used in this research and the obtained mesoscopic images of Al/Ni and Al/PTFE reactive materials

    图  Al/PTFE与Al/Ni反应材料细观有限元模型

    Figure  3.  Mesoscopic FE models of Al/PTFE and Al/Ni

    图  Al/PTFE反应材料的p-up关系

    Figure  4.  p-up relationship of Al/PTFE reactive materials

    图  Al/Ni反应材料的p-up关系

    Figure  5.  p-up relationship of Al/Ni reactive materials

    图  撞击速度为1500 m/s时Al/PTFE反应材料在不同时刻的压力分布云图

    Figure  6.  Pressure cloud diagrams of Al/PTFE for an impact velocity of 1500 m/s at different times

    图  撞击速度为1 500 m/s时不同时刻Al/PTFE反应材料中Al颗粒的变形场

    Figure  7.  Deformation of Al particles in Al/PTFE for an impact velocity of 1 500 m/s at different times

    图  撞击速度分别为800、1200、2 000 m/s时Al/Ni反应材料中Ni颗粒的变形场

    Figure  8.  Deformation of Ni particles in Al/Ni for the impact velocities of 800,1200 and 2 000 m/s

    图  材料冲击温升及高压熔点计算结果

    Figure  9.  Calculation results of shock temperature rises and melt lines

    图  10  撞击速度分别为400、800、2 000 m/s时Al/PTFE反应材料的细观温度场

    Figure  10.  Temperature cloud diagrams of Al/PTFE reactive materials under the impact velocities of 400, 800 and 2 000 m/s

    图  11  撞击速度分别为400、800、2 000 m/s时Al/Ni反应材料的细观温度场

    Figure  11.  Temperature cloud diagrams of Al/Ni reactive materials under the impact velocities of 400, 800 and 2 000 m/s

    表  1  研究所用原材料及规格

    Table  1.   Details of the materials used in this research

    MaterialsSizes/meshesManufacturers
    Al100−200Sinopharm Chemical Reagent Co., Ltd., Shanghai, China
    Ni150−200Aladdin
    PTFE500Shandong Fluorine Chemical Co., Ltd., Shandong, China
    下载: 导出CSV

    表  2  Johnson-Cook 本构模型相关参数[16, 18]

    Table  2.   Parameters of Johnson-Cook model of materials[16, 18]

    MaterialsA/MPaB/MPaCmnTm/K
    Al2654260.0151.0000.34775
    PTFE11440.1201.0001.00350
    Ni1636480.3300.0061.441728
    下载: 导出CSV

    表  3  Mie-Grüneisen状态方程相关参数[19]

    Table  3.   Parameters of the Mie-Grüneisen equation of state[19]

    Materials$\;\rho_0 $/(g∙cm−3)C0/(km∙s−1)SΓ0αv/(10−5 K−1)ΘD/K
    Al2.7125.3321.3752.186.93423
    PTFE2.1521.7541.7230.5933.00190
    Ni8.8754.5901.4402.0012.70427
    下载: 导出CSV
  • [1] 周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056.

    ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056.
    [2] 王海福, 郑元枫, 余庆波, 等. 活性破片引燃航空煤油实验研究 [J]. 兵工学报, 2012, 33(9): 1148–1152.

    WANG H F, ZHENG Y F, YU Q B, et al. Experimental research on igniting the aviation kerosene by reactive fragment [J]. Acta Armamentarii, 2012, 33(9): 1148–1152.
    [3] 徐松林, 阳世清, 张炜, 等. PTFE/Al含能复合物的本构关系 [J]. 爆炸与冲击, 2010, 30(4): 439–444.

    XU S L, YANG S Q, ZHANG W, et al. A constitutive relation for a pressed PTFE/Al energetic composite material [J]. Explosion and Shock Waves, 2010, 30(4): 439–444.
    [4] 徐松林, 阳世清, 徐文涛, 等. PTFE/Al反应材料的力学性能研究 [J]. 高压物理学报, 2009, 23(5): 384–388.

    XU S L, YANG S Q, XU W T, et al. Research on the mechanical performance of PTFE/Al reactive materials [J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 384–388.
    [5] 赵鹏铎, 卢芳云, 李俊玲, 等. 活性材料PTFE/Al动态压缩性能 [J]. 含能材料, 2009, 17(4): 459–462.

    ZHAO P D, LU F Y, LI J L, et al. The dynamic compressive properties of PTFE/Al reactive materials [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 459–462.
    [6] 周杰, 何勇, 何源, 等. Al/PTFE/W 反应材料的准静态压缩性能与冲击释能特性 [J]. 含能材料, 2017, 25(11): 903–912.

    ZHOU J, HE Y, HE Y, et al. Quasi-static compression properties and impact energy release characteristics of Al/PTFE/W reactive materials [J]. Chinese Jouranal of Energetic Materials, 2017, 25(11): 903–912.
    [7] XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. doi: 10.1016/j.jallcom.2015.07.004
    [8] XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. doi: 10.1021/acs.jpcc.6b06530
    [9] EAKINS D E, THADHANI N N. Mechanistic aspects of shock-induced reactions in Ni+Al powder mixtures [C]//Shock Compression of Condensed Matter–2007. Waikoloa, HI, 2007.
    [10] AYDELOTTE B B, THADHANI N N. Mechanistic aspects of impact initiated reactions in explosively consolidated metal+aluminum powder mixtures [J]. Materials Science & Engineering A, 2013, 570: 164–171.
    [11] QIAO L, ZHANG X F, HE Y, et al. Mesoscale simulation on the shock compression behaviour of Al-W-Binder granular metal mixtures [J]. Materials & Design, 2013, 47: 341–349.
    [12] GE C, MAIMAITITUERSUN W, DONG Y X, et al. A study on the mechanical properties and impact-induced initiation characteristics of brittle PTFE/Al/W reactive materials [J]. Materials, 2017, 10(5): 452. doi: 10.3390/ma10050452
    [13] SUN Y, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling [J]. Materials & Design, 2016, 89: 215–224.
    [14] 褚巧龙. 基于Otsu的图像阈值分割算法的研究[D]. 秦皇岛: 燕山大学, 2011.

    CHU Q L. Research on image threshold segmentation arithmetic based on Otsu [D]. Qinhuangdao: Yanshan University, 2011.
    [15] 袁小翠, 黄志开, 马永力, 等. Otsu阈值分割法特点及其应用分析 [J]. 南昌工程学院学报, 2019, 38(1): 89–94.

    YUAN X C, HUANG Z K, MA Y L, et al. Analysis of characteristics and application of Otsu threshold method [J]. Journal of Nanchang Institute of Technology, 2019, 38(1): 89–94.
    [16] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983.
    [17] SYSTÈMES D. Abaqus analysis user’s guide [M]. Providence, RI: Dassault Systèmes Simulia Corp, 2014.
    [18] HERBOLD E B, NESTERENKO V F, BENSON D J, et al. Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene-Al-W granular composite materials [J]. Journal of Applied Physics, 2008, 104(10): 103903. doi: 10.1063/1.3000631
    [19] 汤文辉, 张若棋. 物态方程理论及计算概论[M]. 2版. 北京: 高等教育出版, 2008.

    TANG W H, ZHANG R Q. Introduction to theory and calculation of equation of state [M]. 2nd ed. Beijing: Higher Education Press, 2008.
    [20] 周杰. 典型氟聚物基活性材料冲击反应特性研究[D]. 南京: 南京理工大学, 2018.

    ZHOU J. Study on the impact-induced reaction characteristics of typical fluoropolymer-matrix reactive materials [D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [21] GUO J, ZHANG Q M, ZHANG L S, et al. Reaction behavior of polytetrafluoroethylene/Al granular composites subjected to planar shock wave [J]. Propellants Explosives Pyrotechnics, 2017, 42(3): 299–306.
    [22] EAKINS D E, THADHANI N N. Mesoscale simulation of the configuration-dependent shock-compression response of Ni plus Al powder mixtures [J]. Acta Materialia, 2008, 56(7): 1496–1510. doi: 10.1016/j.actamat.2007.12.009
    [23] EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2009, 54(4): 181–213. doi: 10.1179/174328009X461050
    [24] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. doi: 10.1063/1.4729048
    [25] ZHOU J, HE Y, HE Y, et al. Investigation on impact initiation characteristics of fluoropolymer-matrix reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 603–615. doi: 10.1002/prep.201700003
    [26] ZHANG X F, QIAO L, SHI A S, et al. A cold energy mixture theory for the equation of state in solid and porous metal mixtures [J]. Journal of Applied Physics, 2011, 110(1): 013506. doi: 10.1063/1.3603018
    [27] 何源, 何勇, 张先锋, 等. 疏松金属材料冲击温度理论分析 [J]. 爆炸与冲击, 2012, 32(2): 143–149.

    HE Y, HE Y, ZHANG X F, et al. Theoretical analysis on shock temperature of porous metal [J]. Explosion and Shock Waves, 2012, 32(2): 143–149.
    [28] SONG P, CAI L C, WANG Q S, et al. Sound velocity, temperature, melting along the Hugoniot and equation of state for two porosity aluminums [J]. Journal of Applied Physics, 2011, 110(10): 103522. doi: 10.1063/1.3662193
    [29] QIAO L R, ZHANG X F, HE Y D, et al. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(17): 173513. doi: 10.1063/1.4803712
    [30] SRAJ I, SPECHT P E, THADHANI N N, et al. Numerical simulation of shock initiation of Ni/Al multilayered composites [J]. Journal of Applied Physics, 2014, 115(2): 023515. doi: 10.1063/1.4861402
    [31] 谈庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000.

    TAN Q M, HUANG F L. Introduction to the dynamics of hypervelocity impact [M]. Beijing: Science Press, 2000.
    [32] 夏睿全, 张小平. 聚四氟乙烯废料的热解实验 [J]. 化工进展, 2008, 27(1): 98–103.

    XIA R Q, ZHANG X P. Experimental study on waste polytetrafluoroethylene pyrolysis [J]. Chemical Industry and Engineering Progress, 2008, 27(1): 98–103.
    [33] 李玲琴. 金属/氟聚物反应材料性能的研究[D]. 太原: 中北大学, 2015.

    LI L Q. Research on detonation properties of metal-fluoride reactive materials [D]. Taiyuan: North Central University, 2015.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  6356
  • HTML全文浏览量:  2570
  • PDF下载量:  39
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-05-13

目录

    /

    返回文章
    返回