钙铝榴石-钙铁榴石固溶体的拉曼光谱

王一川

王一川. 钙铝榴石-钙铁榴石固溶体的拉曼光谱[J]. 高压物理学报, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512
引用本文: 王一川. 钙铝榴石-钙铁榴石固溶体的拉曼光谱[J]. 高压物理学报, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512
WANG Yichuan. Raman Scattering of Grossular-Andradite Solid Solution[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512
Citation: WANG Yichuan. Raman Scattering of Grossular-Andradite Solid Solution[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512

钙铝榴石-钙铁榴石固溶体的拉曼光谱

doi: 10.11858/gywlxb.20200512
基金项目: 中国科学院战略性先导科技专项(B类)(XDB18000000)
详细信息
    作者简介:

    王一川(1991-),男,博士研究生,主要从事矿物结构研究. E-mail:wangyc@pku.edu.cn

  • 中图分类号: O521.2

Raman Scattering of Grossular-Andradite Solid Solution

  • 摘要: 为了研究Al3+-Fe3+离子替代对固溶体结构的影响,进行了钙铝榴石-钙铁榴石固溶体的拉曼光谱研究。结果表明:钙铝榴石、钙铁榴石端元分别观测到20和19个拉曼峰,多数峰位随成分呈连续、线性变化,光谱中未发现双模式振动;中频峰峰位变化较大,可能与结构联动或耦合振动有关;由于结构对称性降低,振动光谱中发现了额外峰;拉曼峰宽化现象与有序度降低及结构的畸变有关。通过单参数的Margules方程拟合半峰宽,预测了固溶体的混合焓特征。

     

  • 图  钙铝榴石-钙铁榴石固溶体的拉曼光谱(光谱分为5个区域[14, 17],数字表示钙铁榴石含量,标注星号的峰未在钙铁榴石端元中发现,灰色区域为额外峰出现位置)

    Figure  1.  Raman spectra of grossular-andradite solid solutions (The spectra are divided into 5 regions[14, 17]. The number represents the mole fraction of andradite component. The peaks with asterisk can’t be observed for andradite end-member. Grey areas mark the zones where extra peaks are observed.)

    图  钙铝榴石-钙铁榴石固溶体的拉曼峰频率-成分变化关系:(a)高频振动模式(Si-O)str.,(b)中频振动模式(Si-O)bend,(c)低频(晶格)振动模式(部分振动模式在固溶体系列中表现不连续性。倒三角为(Si-O)str.,右三角为(Si-O)bend,菱形为R(SiO4),正三角为T(Ca),正方形为T(SiO4)。黑色表示T2g,红色表示Eg,蓝色表示A1g。所有峰均采用最小二乘法拟合。y轴采用相同比例尺,以便对比不同振动模式受离子替代的影响程度。)

    Figure  2.  Raman frequencies of grossular-andradite solid solution as a function of composition: (a) high frequency (Si-O)str. modes, (b) medium frequency (Si-O)bend modes, (c) low frequency lattice modes.(Several modes show discontinuity along solid solutions. Symbols: downward pointing triangle = (Si-O)str., rightward pointing triangle = (Si-O)bend, diamonds = R(SiO4), upward pointing triangles = T(Ca), squares = T(SiO4). Colors: black = T2g, red = Eg, blue = A1g. A linear regression by least-squares analyses was applied to all the peak frequencies. Note that the y axes have the same scales and the steepness of the slopes can be compared between the three plots.)

    图  钙铝榴石-钙铁榴石固溶体的半峰宽-成分变化,5个拉曼峰分别归属于[14]:(a) Si-O伸缩振动,(b) Si-O弯曲振动,(c) SiO4转动,(d) Ca平动,(e) SiO4平动

    Figure  3.  Peak widths of selected Raman modes change with composition along grossular-andradite solid solution. The vibrations these peaks can be assigned to Kolesov, et al.[14] are: Si-O stretching (a), Si-O bending (b), SiO4 rotation (c), Ca translation (d) and SiO4 translation (e)

    图  钙铝榴石-钙铁榴石固溶体H峰的超额半峰宽($\Delta {h^{{\rm{ex}}}}$)和预测混合焓($\Delta {H^{{\rm{ex}}}}$)拟合曲线

    Figure  4.  Fitting curve of $\Delta {h^{{\rm{ex}}}}$ of peak H and the predicted $\Delta {H^{{\rm{ex}}}}$ for grossular-andradite solid solution

    图  镁铝榴石-钙铝榴石固溶体的超额半峰宽($\Delta {h^{{\rm{ex}}}}$)拟合曲线(黑色虚线为Du等[13]的L峰数据,红色点线为预测超额混合焓($\Delta H_{{\rm{FWHM}}}^{{\rm{ex}}}$)曲线,红色实线为超额混合焓测热数据($\Delta H_{{\rm{Cal}}}^{{\rm{ex}}}$)拟合曲线[10]

    Figure  5.  Fitting curve of $\Delta {h^{{\rm{ex}}}}$ for pyrope-grossular solid solution (Black dashed line: peak L of Du, et al.[13] Red dotted line: the predicted excess enthalpy of mixing curve. Red solid line: the fitting curve for calorimetric excess enthalpy of mixing data from Newton, et al.[10])

    表  1  钙铝榴石-钙铁榴石固溶体拉曼频率的最小二乘法拟合结果

    Table  1.   Linear regression results of Raman frequencies of Gro-And solid solution versus composition

    Peak No.ν0/cm−1Slope/(cm−1·mol−1% )ErrorAssignAVG/(cm−1·Å−1)R2
    A1007−10.960.42(Si-O)str.−34.670.99
    B880−4.440.350.95
    C848−4.490.890.73
    D825−9.220.510.97
    E629−25.490.85(Si-O)bend−121.520.99
    F591−14.950.221.00
    G−25.112.120.95
    H550−35.540.401.00
    I527−23.42
    J510−18.600.790.98
    K479−27.020.411.00
    L418−34.020.261.00
    M376−6.640.77R(SiO4)−81.330.89
    N370−17.810.470.99
    O350−24.420.481.00
    P332−19.430.301.00
    Q318−22.070.99T(Ca)−77.760.99
    R279−14.720.251.00
    S248−12.200.550.98
    T240−10.140.17T(SiO4)−43.481.00
    U182−8.130.540.96
     Note: (1) The Raman modes of Gro and And are assigned according to Kolesov, et al[14].
    (2) AVG:average value of slopes in each assignment. Unit cell parameters of grossular and andradite are 11.84 Å and 12.05 Å respectively according to our single crystal XRD data.
    下载: 导出CSV
  • [1] GREW E S, LOCOCK A J, MILLS S J, et al. Nomenclature of the garnet supergroup [J]. American Mineralogist, 2013, 98(4): 785–810. doi: 10.2138/am.2013.4201
    [2] HAZEN R M, DOWNS R T, CONRAD P G, et al. Comparative compressibilities of majorite-type garnets [J]. Physics and Chemistry of Minerals, 1994, 21(5): 344–349. doi: 10.1007/BF00202099
    [3] CONRAD P G, ZHA C S, MAO H K, et al. The high-pressure, single-crystal elasticity of pyrope, grossular, and andradite [J]. American Mineralogist, 1999, 84(3): 374–383. doi: 10.2138/am-1999-0321
    [4] DU W, CLARK S M, WALKER D. Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence [J]. American Mineralogist, 2015, 100(1): 215–222. doi: 10.2138/am-2015-4752
    [5] BLUNDY J, WOOD B. Prediction of crystal-melt partition coefficients from elastic moduli [J]. Nature, 1994, 372(6505): 452–454. doi: 10.1038/372452a0
    [6] SUN C G, LIANG Y. The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts [J]. Chemical Geology, 2013, 358: 23–36. doi: 10.1016/j.chemgeo.2013.08.045
    [7] GANGULY J, CHENG W J, O’NEILL H S C. Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: implications for stability and mixing properties [J]. American Mineralogist, 1993, 78(5/6): 583–593.
    [8] GEIGER C A. Silicate garnet: a micro to macroscopic (re)view [J]. American Mineralogist, 2008, 93(2/3): 360–372. doi: 10.2138/am.2008.2588
    [9] GEIGER C A, FEENSTRA A. Molar volumes of mixing of almandine-pyrope and almandine-spessartine garnets and the crystal chemistry and thermodynamic-mixing properties of the aluminosilicate garnets [J]. American Mineralogist, 1997, 82(5/6): 571–581. doi: 10.2138/am-1997-5-617
    [10] NEWTON R C, CHARLU T V, KLEPPA O J. Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2 [J]. Geochimica et Cosmochimica Acta, 1977, 41(3): 369–377. doi: 10.1016/0016-7037(77)90264-2
    [11] UNGARETTI L, LEONA M, MERLI M, et al. Non-ideal solid-solution in garnet: crystal-structure evidence and modelling [J]. European Journal of Mineralogy, 1995, 7(6): 1299–1312. doi: 10.1127/ejm/7/6/1299
    [12] BOFFA BALLARAN T, CARPENTER M A, GEIGER C A, et al. Local structural heterogeneity in garnet solid solutions [J]. Physics and Chemistry of Minerals, 1999, 26(7): 554–569. doi: 10.1007/s002690050219
    [13] DU W, HAN B F, CLARK S M, et al. Raman spectroscopic study of synthetic pyrope-grossular garnets: structural implications [J]. Physics and Chemistry of Minerals, 2018, 45(2): 197–209. doi: 10.1007/s00269-017-0908-z
    [14] KOLESOV B A, GEIGER C A. Raman spectra of silicate garnets [J]. Physics and Chemistry of Minerals, 1998, 25(2): 142–151. doi: 10.1007/s002690050097
    [15] MCALOON B P, HOFMEISTER A M. Single-crystal IR spectroscopy of grossular-andradite garnets [J]. American Mineralogist, 1995, 80(11/12): 1145–1156. doi: 10.2138/am-1995-11-1205
    [16] HOFMEISTER A M, FAGAN T J, CAMPBELL K M, et al. Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca [J]. American Mineralogist, 1996, 81(3/4): 418–428. doi: 10.2138/am-1996-3-416
    [17] HOFMEISTER A M, CHOPELAS A. Vibrational spectroscopy of end-member silicate garnets [J]. Physics and Chemistry of Minerals, 1991, 17(6): 503–526. doi: 10.1007/BF00202230
    [18] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976, 32(5): 751–767. doi: 10.1107/S0567739476001551
    [19] BOFFA BALLARAN T, WOODLAND A B. Local structure of ferric iron-bearing garnets deduced by IR-spectroscopy [J]. Chemical Geology, 2006, 225(3/4): 360–372. doi: 10.1016/j.chemgeo.2005.08.028
    [20] WANG Y C, SUN Q, DUAN D F, et al. The study of crystal structure on grossular-andradite solid solution [J]. Minerals, 2019, 9(11): 691. doi: 10.3390/min9110691
    [21] LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254. doi: 10.1080/08957959.2012.657634
    [22] GILLET P, FIQUET G, MALEZIEUX J M, et al. High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite [J]. European Journal of Mineralogy, 1992, 4(4): 651–664. doi: 10.1127/ejm/4/4/0651
    [23] MOORE R K, WHITE W B, LONG T V. Vibrational spectra of the common silicates: I. the garnets [J]. American Mineralogist, 1971, 56(1/2): 54–71.
    [24] PASCALE F, CATTI M, DAMIN A, et al. Vibration frequencies of Ca3Fe2Si3O12 andradite: an ab initio study with the CRYSTAL code [J]. Journal of Physical Chemistry B, 2005, 109(39): 18522–18527. doi: 10.1021/jp052991e
    [25] PASCALE F, ZICOVICH-WILSON C M, ORLANDO R, et al. Vibration frequencies of Mg3Al2Si3O12 pyrope. an ab initio study with the CRYSTAL code [J]. The Journal of Physical Chemistry B, 2005, 109(13): 6446–6152. doi: 10.1021/jp050316z
    [26] BORN L, ZEMANN J. Abstandsberechnungen und gitterenergetische Berechnungenan Granaten [J]. Beiträgezur Mineralogie und Petrographie, 1964, 10(1): 2–23. doi: 10.1007/BF01192531
    [27] WOODLAND A B, ROSS II C R. A crystallographic and mössbauer spectroscopy study of ${ {\rm{Fe}}_3^{2 + } }$ Al2Si3O12- ${{\rm{Fe}}_3^{2 + }{\rm{Fe}}_2^{3 + }}$ Si3O12, (Almandine-"Skiagite") and Ca3 ${{\rm{Fe}}_3^{2 + }}$ Si3O12- ${{\rm{Fe}}_3^{2 + }{\rm{Fe}}_2^{3 + }}$ Si3O12 (Andradite-"Skiagite") garnet solid solutions [J]. Physics and Chemistry of Minerals, 1994, 21(3): 117–132. doi: 10.1007/BF00203142
    [28] ZIMAN J M. Models of disorder: the theoretical physics of homogeneously disordered systems [M]. Cambridge: Cambridge University Press, 1979.
    [29] DE LA PIERRE M, NOEL Y, MUSTAPHA S, et al. The infrared vibrational spectrum of andradite-grossular solid solutions: a quantum mechanical simulation [J]. American Mineralogist, 2013, 98(5/6): 966–976. doi: 10.2138/am.2013.4156
    [30] DEMPSEY M J. Evidence for structural changes in garnet caused by calcium substitution [J]. Contributions to Mineralogy and Petrology, 1980, 71(3): 281–282. doi: 10.1007/BF00371669
    [31] FEI X H, ZHANG Z C, CHENG Z G, et al. Factors controlling the crystal morphology and chemistry of garnet in skarn deposits: a case study from the Cuihongshan polymetallic deposit, Lesser Xing’an Range, NE China [J]. American Mineralogist, 2019, 104(10): 1455–1468. doi: 10.2138/am-2019-6968
    [32] GASPAR M, KNAACK C, MEINERT L D, et al. REE in skarn systems: a LA-ICP-MS study of garnets from the Crown Jewel gold deposit [J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 185–205. doi: 10.1016/j.gca.2007.09.033
    [33] XU J, CIOBANU C L, COOK N J, et al. Skarn formation and trace elements in garnet and associated minerals from Zhibula copper deposit, Gangdese Belt, southern Tibet [J]. Lithos, 2016, 262: 213–231. doi: 10.1016/j.lithos.2016.07.010
    [34] BECKER U, POLLOK K. Molecular simulations of interfacial and thermodynamic mixing properties of grossular-andradite garnets [J]. Physics and Chemistry of Minerals, 2002, 29(1): 52–64. doi: 10.1007/s002690100211
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7803
  • HTML全文浏览量:  2951
  • PDF下载量:  41
出版历程
  • 收稿日期:  2020-02-20
  • 修回日期:  2020-03-08

目录

    /

    返回文章
    返回