小钨球对防弹衣加松木靶的侵彻研究

唐昌州 智小琦 徐锦波 陈志斌

唐昌州, 智小琦, 徐锦波, 陈志斌. 小钨球对防弹衣加松木靶的侵彻研究[J]. 高压物理学报, 2020, 34(5): 055101. doi: 10.11858/gywlxb.20200506
引用本文: 唐昌州, 智小琦, 徐锦波, 陈志斌. 小钨球对防弹衣加松木靶的侵彻研究[J]. 高压物理学报, 2020, 34(5): 055101. doi: 10.11858/gywlxb.20200506
TANG Changzhou, ZHI Xiaoqi, XU Jinbo, CHEN Zhibin. Research on Small Tungsten Spheres Penetrating into Pine Target with Body Armor[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055101. doi: 10.11858/gywlxb.20200506
Citation: TANG Changzhou, ZHI Xiaoqi, XU Jinbo, CHEN Zhibin. Research on Small Tungsten Spheres Penetrating into Pine Target with Body Armor[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055101. doi: 10.11858/gywlxb.20200506

小钨球对防弹衣加松木靶的侵彻研究

doi: 10.11858/gywlxb.20200506
详细信息
    作者简介:

    唐昌州(1996-),男,硕士研究生,主要从事弹药工程与毁伤技术研究. E-mail:562870134@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事武器毁伤与装药技术研究. E-mail:zxq4060@sina.com

  • 中图分类号: TJ012.4

Research on Small Tungsten Spheres Penetrating into Pine Target with Body Armor

  • 摘要: 为获得小钨球对防弹衣加人体等效靶的侵彻性能,对小钨球侵彻Ⅲ级软体防弹衣加25 mm厚红松靶进行了试验研究。在此基础上,结合小钨球侵彻LY-12硬铝靶试验与数值模拟,研究了LY-12硬铝靶与Ⅲ级软体防弹衣加25 mm厚红松靶之间的等效关系,并通过量纲分析方法建立了小钨球侵彻Ⅲ级软体防弹衣加25 mm厚红松靶的弹道极限预测公式,分析了小钨球质量变化对其侵彻性能影响的规律。结果表明:对于小钨球的侵彻,Ⅲ级软体防弹衣加25 mm厚红松靶可等效为6.2 mm厚LY-12硬铝靶;弹道极限预测公式的预测值与试验值吻合良好,并且随着钨球质量的增加,弹道极限近似服从幂函数递减规律。研究结果对单兵破片战斗部的改进设计具有一定的参考价值。

     

  • 图  钨球及弹托

    Figure  1.  Tungsten spheres and sabots

    图  试验布置示意图

    Figure  2.  Schematic of experimental set-up

    图  试验后的防弹衣和红松木

    Figure  3.  Body armor and pine after the experiment

    图  防弹纤维的典型损伤

    Figure  4.  Typical damage of bulletproof fiber

    图  试验后LY-12硬铝靶状态图

    Figure  5.  States of LY-12 hard aluminum target after the experiment

    图  钨球侵彻靶板的剩余速度-着靶速度曲线

    Figure  6.  Residual velocity-initial velocity curves of tungsten spheres penetrating targets

    图  有限元模型

    Figure  7.  Finite element model

    图  仿真值与试验值的对比

    Figure  8.  Comparison between simulation results and experimental results

    表  1  R-I模型参数

    Table  1.   R-I model parameters

    Target type$ a $vbl/(m·s−1)$ p $
    Body armor + Pine composite target0.73692.92
    8 mm thick LY-12 hard aluminum target0.77850.12
    下载: 导出CSV

    表  2  弹靶材料模型参数

    Table  2.   Material model parameters of projectile and target

    Materialρ/(g·cm−3)E/GPaμSIGY/MPaETAN/MPaSRCSRPFS
    Tungsten alloy18.13670.3031506 7923.961.2
    LY-12 hard aluminum 2.78 710.3 3751000000.8
    下载: 导出CSV

    表  3  钨球侵彻不同厚度LY-12硬铝靶的仿真结果

    Table  3.   Simulation results of tungsten sphere penetrating LY-12 hard aluminum target with different thicknesses

    Initial velocity/(m·s−1)Thickness of target/mmResidual velocity/(m·s−1)Penetration result
    692.96.1063.0Penetration
    6.2021.4Penetration
    6.210Embedment
    6.250Embedment
    6.300Embedment
    下载: 导出CSV

    表  4  钨球侵彻原型靶与等效靶弹道极限的对比

    Table  4.   Comparison of ballistic limits between tungsten spheres penetrating prototype target and the equivalent target

    Type of tungsten sphereTarget typeBallistic limit/(m·s−1)Relative error/%
    0.21 g, $ \varnothing $2.8 mmBody armor + Pine composite target692.91.8
    6.2 mm thick LY-12 hard aluminum target705.2
    0.17 g, $ \varnothing $2.6 mmBody armor + Pine composite target742.32.2
    6.2 mm thick LY-12 hard aluminum target758.7
    下载: 导出CSV

    表  5  确定弹道极限的主要物理量

    Table  5.   Main physical quantities for determining ballistic limit

    MaterialPhysical quantityDimension
    Tungsten sphereDensity ρp/(kg·m−3)ML−3
    Diameter Dp/PaL
    Elastic modulus $ {E}$p/PaL−1MT−2
    Yield strength $ {\sigma }$sp/PaL−1MT−2
    Characteristic strain $ {\varepsilon } $p1
    Sound velocity $ {C}$p/(m·s−1)LT−1
    Body armorDensity ρf /(kg·m−3)ML−3
    Thickness $ {h}$f /mL
    Elastic modulus $ {E}$f /PaL−1MT−2
    Compressive strength $ {\sigma }$sf /PaL−1MT−2
    Shear strength $ {\sigma }_{\tau}$f /PaL−1MT−2
    Tensile strength $ {\sigma } $ff /PaL−1MT−2
    Characteristic strain $ {\varepsilon }$f 1
    Sound velocity $ {C} $f /(m·s−1)LT−1
    PineDensity ρs/(kg·m−3)ML−3
    Thickness $ {h} $s/mL
    Elastic modulus $ {E} $s/PaL−1MT−2
    Failure stress $ {\sigma }$ss/PaL−1MT−2
    Characteristic strain $ {\varepsilon }$s1
    Sound velocity $ {C}$s/(m·s−1)LT−1
    下载: 导出CSV

    表  6  不同方法计算的弹道极限的比较

    Table  6.   Comparison of ballistic limits calculated by different methods

    Mass of tungsten sphere/gDiameter of tungsten sphere/mmBallistic limit/(m·s−1)Relative error/%
    Calculated Simulated
    0.263.02643.8649−0.8
    0.313.20609.9623−2.1
    0.363.36582.8599−2.8
    0.413.52558.1580−3.9
    0.463.64540.9561−3.7
    下载: 导出CSV

    表  7  0.20 g钨球侵彻防弹衣+红松木复合靶的弹道极限的试验值与计算值的对比

    Table  7.   Comparison between experimental and calculated values of ballistic limits of tungsten spheres with mass of 0.20 g penetrating body armor and pine composite target

    Type of tungsten sphereBallistic limit/(m·s−1)Relative error/%
    Experimental valueCalculated value
    0.20 g,$\varnothing$2.8 mm709.4702.5−1.0
    下载: 导出CSV
  • [1] 程可. 轻武器杀伤元对明胶靶标侵彻的数值仿真研究 [D]. 南京: 南京理工大学, 2012: 1–2.

    CHEN K. Numerical simulation research of small arms lethal-element penetrating gelatin target [D]. Nanjing: Nanjing University of Science and Technology, 2012: 1–2.
    [2] LIDEN E, BERLIN R, JANZON B, et al. Some observations relating to behind-body armour blunt trauma effects caused by ballistic impact [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(Supplement): S145–S148. doi: 10.1097/00005373-198801001-00029
    [3] ROBERTS J C, O’CONNOR J V, WARD E E. Modeling the effect of nonpenetrating ballistic impact as a means of detecting behind-armor blunt trauma [J]. Journal of Trauma and Acute Care Surgery, 2005, 58: 1241–1251. doi: 10.1097/01.TA.0000169805.81214.DC
    [4] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact [J]. Journal of Biomechanics, 2007, 40(1): 125–136. doi: 10.1016/j.jbiomech.2005.11.003
    [5] MERKLE A C, WARD E E, O’CONNOR J V, et al. Assessing behind armor blunt trauma (BABT) under NIJ Standard-0101.04 conditions using human torso models [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(6): 1555–1561. doi: 10.1097/TA.0b013e318160ff3a
    [6] SHEN W, NIU Y, BYKANOVA L, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets [J]. Journal of Biomechanical Engineering, 2010, 132(12): 121001. doi: 10.1115/1.4002699
    [7] 罗少敏, 徐诚, 陈爱军, 等. 步枪弹侵彻带软硬复合防护明胶靶标的数值模拟 [J]. 兵工学报, 2014, 35(8): 1172–1178. doi: 10.3969/j.issn.1000-1093.2014.08.006

    LUO S M, XU C, CHEN A J, et al. Numerical simulation of bullets penetrating into gelatin target with hard/soft composite armor [J]. Acta Armamentarii, 2014, 35(8): 1172–1178. doi: 10.3969/j.issn.1000-1093.2014.08.006
    [8] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析 [J]. 振动与冲击, 2018, 37(13): 20–26.

    SUN F, MA L, ZHU Y H, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor [J]. Journal of Vibration and Shock, 2018, 37(13): 20–26.
    [9] 唐刘建, 温垚珂, 薛本源, 等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究 [J]. 振动与冲击, 2019, 38(4): 250–254.

    TANG L J, WEN Y K, XUE B Y, et al. Pistol bullet impact soft body armor covered bionic human torso [J]. Journal of Vibration and Shock, 2019, 38(4): 250–254.
    [10] 刘坤, 吴志林, 宁建国, 等. 手枪弹对带软防护的明胶靶标侵彻机理与实验研究 [J]. 兵工学报, 2018, 39(1): 1–17. doi: 10.3969/j.issn.1000-1093.2018.01.001

    LIU K, WU Z L, NING J G, et al. Investigation on the mechanism and experiment of pistol cartridge penetrating into gelatin target with soft body armor [J]. Acta Armamentarii, 2018, 39(1): 1–17. doi: 10.3969/j.issn.1000-1093.2018.01.001
    [11] 黄拱武. 弹体撞击带纤维软防护明胶靶标的数值仿真研究 [D]. 南京: 南京理工大学, 2013: 41–43.

    HUANG G W. Numerical simulation research of projectile impacting gelatin target with fiber armor [D]. Nanjing: Nanjing University of Science and Technology, 2013: 41–43.
    [12] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. doi: 10.1115/1.3636566
    [13] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. doi: 10.3321/j.issn:1001-1455.2005.05.015

    MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. doi: 10.3321/j.issn:1001-1455.2005.05.015
    [14] 曹兵. 不同材质靶板抗破片侵彻等效关系实验研究 [J]. 弹箭与制导学报, 2006(4): 113–114. doi: 10.3969/j.issn.1673-9728.2006.04.034

    CAO B. An experimental investigation on the equivalent relation between different armour plates penetrated by fragments [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006(4): 113–114. doi: 10.3969/j.issn.1673-9728.2006.04.034
    [15] 曹兵. 靶板等效方法研究 [J]. 弹箭与制导学报, 2003(Suppl 4): 122–123.

    CAO B. Study on equivalent target experimental methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003(Suppl 4): 122–123.
    [16] 李学林, 项鑫, 黄广炎, 等. 钨球破片对相控阵雷达典型部件的侵彻特性研究 [J]. 兵工学报, 2010(Supp 1): 51–54.

    LI X L, XIANG X, HUANG G Y, et al. Penetration characteristics of tungsten sphere fragment to typical components of phased array radar [J]. Acta Armamentarii, 2010(Supp 1): 51–54.
    [17] 宫能平. LY12CZ铝合金棒料的拉伸实验研究 [J]. 淮南工业学院学报, 2002(1): 62–65.

    GONG N P. Tensile mechanics property of aluminium LY12CZ under different strain rates [J]. Journal of Huainan Institute of Technology, 2002(1): 62–65.
    [18] 王雪, 智小琦, 徐锦波, 等. 球形破片侵彻多层板弹道极限的量纲分析 [J]. 高压物理学报, 2019, 33(6): 157–165.

    WANG X, ZHI X Q, XU J B, et al. Dimensional analysis of ballistic limit of fragments penetrating multi-layer plate [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 157–165.
    [19] 朱耀, 庞宝君, 盖秉政. 一种用于动态拉伸试验装置的新型试件装卡方式 [J]. 实验力学, 2009(5): 55–60.

    ZHU Y, PANG B J, GAI B Z. A new specimen fastener for dynamic tensile testing apparatus [J]. Journal of Experimental Mechanics, 2009(5): 55–60.
    [20] 米双山, 何剑彬, 张锡恩, 等. 战斗损伤仿真中的等效靶与破片终点速度研究 [J]. 兵工学报, 2005(5): 605–608. doi: 10.3321/j.issn:1000-1093.2005.05.007

    MI S S, HE J B, ZHANG X E, et al. Equivalent target and terminal velocity of fragments in battle damage simulation [J]. Acta Armamentarii, 2005(5): 605–608. doi: 10.3321/j.issn:1000-1093.2005.05.007
    [21] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 1–2.

    TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005: 1–2.
    [22] 毛亮, 王华, 姜春兰, 等. 钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度 [J]. 振动与冲击, 2015, 34(13): 1–5.

    MAO L, WANG H, JIANG C L, et al. Ballistic limit velocity of tungsten alloy spherical fragment penetrating ceramic/DFRP composite target plates [J]. Journal of Vibration and Shock, 2015, 34(13): 1–5.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  5936
  • HTML全文浏览量:  2549
  • PDF下载量:  38
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-04-29

目录

    /

    返回文章
    返回