羟碳铈矿的高压拉曼光谱研究

宋海鹏 刘云贵 李想 靳树宇 王欣宇 巫翔

宋海鹏, 刘云贵, 李想, 靳树宇, 王欣宇, 巫翔. 羟碳铈矿的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847
引用本文: 宋海鹏, 刘云贵, 李想, 靳树宇, 王欣宇, 巫翔. 羟碳铈矿的高压拉曼光谱研究[J]. 高压物理学报, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847
SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847
Citation: SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847

羟碳铈矿的高压拉曼光谱研究

doi: 10.11858/gywlxb.20190847
基金项目: 国家自然科学基金(41827802)
详细信息
    作者简介:

    宋海鹏(1995-),男,硕士研究生,主要从事高压矿物物理研究. E-mail: songhaipeng@cug.edu.cn

    通讯作者:

    巫  翔(1978-),男,博士,教授,主要从事地球深部物质的组成、状态和物性研究.E-mail: wuxiang@cug.edu.cn

  • 中图分类号: O521.2; P574.1

High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)

  • 摘要: 羟碳铈矿是一种重要的含水稀土氟碳酸盐矿物,了解其高压下的物理性质对于探讨氟和水的存在对碳酸盐矿物物性的影响具有重要意义。运用金刚石压腔(DAC)技术与激光拉曼光谱,在室温下原位开展了羟碳铈矿的高压拉曼光谱学研究。结果显示,在常压下由[CO3]2–振动引起的拉曼峰共有6条:面内弯曲振动引起的拉曼峰位于604、742 cm–1,对称伸缩振动引起的拉曼峰位于1 083、1 096和1 103 cm–1,而1 430 cm–1属于非对称伸缩振动;由[OH]振动引起的拉曼峰有6条,分别位于3 174、3 197、3 290、3 345、3 526和3 648 cm–1。随着压力的增加(0~30 GPa),未发现拉曼峰的消失或新拉曼峰的出现,表明在测试压力范围内羟碳铈矿未发生相变。拉曼峰均往高波数偏移,其位移与压力呈现良好的线性正相关关系,由[CO3]2–的面内弯曲振动引起的拉曼峰对压力的依赖系数最小,为2(0.06) cm–1/GPa,而基团外振动引起的拉曼峰对压力的依赖系数最大,为4.2(0.11) cm–1/GPa。对比无水碳酸盐高压下拉曼峰的位移,认为[OH]和F的存在导致羟碳铈矿高压下结构中[CO3]2–基团的振动模式对压力的依赖性发生变化,进一步影响到晶体高压下的各向异性。这为研究地球深部碳酸盐的高压物性行为提供了新的启示。

     

  • 图  羟碳铈矿常压拉曼光谱(蓝色实线代表RRUFF数据库中羟碳铈矿的数据[12],红色实线代表本实验测得的羟碳铈矿数据,黑色实线代表氟碳铈矿的数据。)

    Figure  1.  Raman spectra of hydroxylbastnäsite-(Ce) at ambient conditions (The solid blue line represents the data for the hydroxylbastnäsite-(Ce) in the RRUFF database[12]; the solid red line represents the hydroxylbastnäsite-(Ce) data measured in this experimental sample; the solid black line represents the data for bastnäsite.)

    图  高压下羟碳铈矿的代表性拉曼光谱(压力范围0~30 GPa)

    Figure  2.  Selected Raman spectra of hydroxylbastnäsite-(Ce) at high pressure (Pressure range is 0–30 GPa.)

    图  羟碳铈矿的拉曼振动频率随压力的变化(νi代表不同的拉曼振动峰)

    Figure  3.  Variations of Raman frequencies as a function of pressure (νi represents different Raman vibration peaks.)

    图  碳酸盐矿物中[CO3]2–的dνi/dp(空心符号代表常见的几种无水碳酸盐,实心符号代表含水碳酸盐,*代表本次实验数据)

    Figure  4.  dνi/dp of [CO3]2– in carbonate minerals (The open symbols represent several common anhydrous carbonates, the solid symbols represent aqueous carbonates, and * represents the experimental data.)

    表  1  常见稀土氟碳酸盐矿物常压拉曼峰

    Table  1.   Atmospheric pressure Raman peaks of common rare earth fluorocarbonate minerals

    MineralChemical formulaRaman peak/cm–1
    [CO3]2–[OH]
    Cordylite[13]Ce2Ba[CO3]3F27209671 0881 538
    628
    Bastnäsite[13]Ce[CO3]F7328351 0981 476
    1 447
    Hydroxylbastnäsite-(Ce)[12]Ce[CO3][(OH)0.65F0.35]1 0803 235
    1 0873 493
    1 0983 568
    3 638
    Hydroxylbastnäsite-(Ce)[14]Ce[CO3][(OH)0.85F0.15]7268791 0791 3903 491
    1 0971 4253 564
    3 630
    3 648
    Hydroxylbastnäsite-(Ce)*Ce[CO3][(OH)0.62F0.38]6041 0831 4303 174
    7421 0963 200
    1 1033 290
    3 345
    3 526
    3 648
     Note: * represents the experimental data.
    下载: 导出CSV

    表  2  不同压力下羟碳铈矿拉曼峰峰位

    Table  2.   Raman peaks position of hydroxylbastnäsite-(Ce) under different pressures

    Pressure/GPaRaman peak/cm–1
    REE-O/F[CO]32–[OH]
    0.7168.7262.2357.8411.4742.21 084.81 093.73 169.7
    1.2166.2263.6360.1408.9741.91 084.81 095.91 102.73 172.8
    2.0168.1272.7363.5410.0741.41 087.01 098.21 104.93 172.1
    3.3171.7279.6368.9416.6745.11 089.21 102.61 109.23 176.9
    4.7174.3285.1375.8420.4744.61 093.71 107.11 113.63 177.9
    5.8177.5292.3380.4427.2749.91 097.11 111.51 118.2
    6.2180.4295.3383.8429.5751.61 098.21 111.53 179.4
    7.5182.7300.8385.4433.9754.11 100.41 114.91 122.73 179.1
    9.6187.8312.0401.9445.6763.61 107.11 122.71 129.43 181.7
    10.9190.5315.9404.6448.4760.91 109.31 124.91 131.43 183.4
    11.5196.8321.4410.6455.5764.51 113.81 128.41 135.53 183.5
    13.5201.7326.6413.6459.8769.01 116.01 131.61 137.93 185.8
    14.0199.2329.7417.9466.3766.21 118.21 134.71 142.43 187.0
    16.0205.7339.7424.9476.0768.61 125.91 140.41 149.13 187.2
    18.0209.9344.7430.1479.6777.01 129.31 144.93 189.9
    18.6205.8349.6433.5484.2776.91 130.41 146.03 192.4
    20.1214.9354.7438.2489.3778.81 133.81 149.33 189.7
    22.0214.6359.0443.3490.9783.41 136.01 151.53 190.4
    23.1219.0360.4446.1499.4781.61 138.21 156.01 164.83 192.5
    24.0223.3364.5448.2502.2791.01 142.71 158.21 169.23 192.7
    25.7228.3368.0451.6506.7789.01 144.91 160.41 173.63 192.8
    27.0240.2376.9474.8519.21 151.11 164.83 193.6
    28.8235.5380.21 151.51 168.1
    30.0238.9391.01 153.71 172.8
    下载: 导出CSV

    表  3  不同拉曼峰的压力依赖系数及误差

    Table  3.   Pressure dependence coefficients and errors for different Raman peaks

    Raman
    peaks/cm–1
    Dependence
    coefficients/(cm–1·GPa–1)
    ErrorRaman
    peaks/cm–1
    Dependence
    coefficients/(cm–1·GPa–1)
    Error
    1692.50.061 0832.50.04
    2624.20.101 0962.60.05
    3584.00.111 1032.90.05
    4044.20.073 1740.80.05
    7422.00.073 1971.70.12
    下载: 导出CSV
  • [1] MERLINI M, HANFLAND M, CRICHTON W A. CaCO3-Ⅲ and CaCO3-Ⅵ, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 265–271. doi: 10.1016/j.jpgl.2012.04.036
    [2] SUITO K, NAMBA J, HORIKAWA T. Phase relations of CaCO3 at high pressure and high temperature [J]. American Mineralogist, 2001, 86(9): 997–1002. doi: 10.2138/am-2001-8-906
    [3] MERRILL L, BASSETT W A. The crystal structure of CaCO3(Ⅱ), a high-pressure metastable phase of calcium carbonate [J]. Acta Crystallographica Section B, 1975, 31(2): 343–349. doi: 10.1107/S0567740875002774
    [4] ANTAO S M, MULDER W H, HASSAN I, et al. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+magnesite dolomite reaction boundary [J]. American Mineralogist, 2004, 89: 1142–1147. doi: 10.2138/am-2004-0728
    [5] PEARSON D G, BRENKER F E, NESTOLA F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond [J]. Nature, 2014, 507(7491): 221–224. doi: 10.1038/nature13080
    [6] TOBIAS G, STEPHAN K, ARON R, et al. The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2018, 482: 236–244. doi: 10.1016/j.jpgl.2017.11.011
    [7] 刘云贵, 吕政星, 宋海鹏, 等. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义 [J]. 高压物理学报, 2019, 33(4): 043101.

    LIU Y G, LÜ Z X, SONG H P, et al. Fluorescence mechanism of diamond and the significance in high-pressure raman spectrometry [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101.
    [8] 韩茜, 吴也, 黄海军. BiFeO3高压拉曼光谱研究 [J]. 高压物理学报, 2018, 32(5): 051202.

    HAN X, WU Y, HUANG H J. High pressure raman investigation of BiFeO3 [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202.
    [9] YANG H, SANO J L, EICHLER C, et al. Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite [J]. Acta Crystallographica, 2007, C63: i122–i124.
    [10] YANG H, ZWICK J, DOWNS R T, et al. Isokite, CaMg(PO4)F, isostructural with titanite [J]. Acta Crystallographica, 2007, 63(12): i89–i90.
    [11] LIU D, PANG Y W, YE Y, et al. In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: implications for dense hydrous magnesium silicates in subduction zones [J]. American Mineralogist, 2019, 104: 53–63. doi: 10.2138/am-2019-6604
    [12] YANG H, ROBERT F D, PAMELA G, et al. Crystal structure and Raman spectrum of hydroxyl-bästnasite-(Ce), CeCO3(OH) [J]. American Mineralogist, 2008, 93: 698–701. doi: 10.2138/am.2008.2827
    [13] 洪文兴, 何松裕, 黄舜华, 等. 稀土氟碳酸盐矿物的拉曼光谱研究 [J]. 光谱学与光谱分析, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010

    HONG W X, HE S Y, HUANG S H, et al. A Raman spectral studies of rare-earth (REE) fluoro-carbonate minerals [J]. Spectroscopy and Spectral Analysis, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010
    [14] KIYONORI M, RITSURO M, TETSUO M, et al. Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan [J]. Journal of Mineralogical and Petrological Sciences, 2013, 108(6): 326–334. doi: 10.2465/jmps.121129
    [15] XU J G, KUANG Y Q, ZHANG B, et al. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy [J]. Physics and Chemistry of Minerals, 2015, 42(10): 805–816. doi: 10.1007/s00269-015-0764-7
    [16] PHILIPPE G, CLAUDINE B, BRUNO R, et al. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite [J]. Physics and Chemistry of Minerals, 1993, 20(1): 1–18.
    [17] MINCH R, SEOUNG D H, EHM L, et al. High-pressure behavior of otavite (CdCO3) [J]. Journal of Alloys and Compounds, 2010, 508(2): 251–257. doi: 10.1016/j.jallcom.2010.08.090
    [18] 何运鸿, 田雨, 赵慧芳, 等. 高氯酸钠高压相变的拉曼光谱证据 [J]. 高压物理学报, 2018, 32(4): 041201.

    HE Y H, TIAN Y, ZHAO H F, et al. Raman evidences for phase transition of sodium perchlorate at high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201.
    [19] 田雨, 刘雪廷, 何运鸿, 等. NaCl-O2体系高温高压化学反应的拉曼光谱证据 [J]. 高压物理学报, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003

    TIAN Y, LIU X T, HE Y H, et al. Raman evidences of chemical reaction of NaCl-O2 system at high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003
    [20] 刘曦, 代立东, 邓力维, 等. 近十年我国在地球内部物质高压物性实验研究方面的主要进展 [J]. 高压物理学报, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001

    LIU X, DAI L D, DENG L W, et al. Recent progresses in some fields of high-pressure physics relevant to Earth sciences achieved by Chinese scientists [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  9946
  • HTML全文浏览量:  3355
  • PDF下载量:  56
出版历程
  • 收稿日期:  2019-10-16
  • 修回日期:  2019-11-04

目录

    /

    返回文章
    返回