超声动态载荷下混凝土过渡区域的损伤演化

王力晓 陈启东 刘鑫

王力晓, 陈启东, 刘鑫. 超声动态载荷下混凝土过渡区域的损伤演化[J]. 高压物理学报, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
引用本文: 王力晓, 陈启东, 刘鑫. 超声动态载荷下混凝土过渡区域的损伤演化[J]. 高压物理学报, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
WANG Lixiao, CHEN Qidong, LIU Xin. Damage Evolution in Concrete Interfacial Transition Zone with Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833
Citation: WANG Lixiao, CHEN Qidong, LIU Xin. Damage Evolution in Concrete Interfacial Transition Zone with Ultrasonic Dynamic Load[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044205. doi: 10.11858/gywlxb.20190833

超声动态载荷下混凝土过渡区域的损伤演化

doi: 10.11858/gywlxb.20190833
详细信息
    作者简介:

    王力晓(1994-),男,硕士研究生,主要从事机械振动与混凝土仿真研究. E-mail:wanglx94@163.com

    通讯作者:

    陈启东(1962-),男,教授,主要从事机械振动与流体力学研究. E-mail:cqd666@163.com

  • 中图分类号: O347.3; TU528

Damage Evolution in Concrete Interfacial Transition Zone with Ultrasonic Dynamic Load

  • 摘要: 混凝土是由粗骨料、水泥砂浆以及过渡区域组成的三相非均质复合材料。混凝土过渡区域(Interfacial transition zone, ITZ)是三相中最薄弱的环节,且难以观测,对混凝土的宏观力学性能有着重要影响。基于ABAQUS的Dynamic/Explicit模块,建立了能反映混凝土基质、骨料形状和 ITZ等真实细观结构的有限元模型,并应用该模型研究了过渡区域对混凝土损伤破坏的影响。研究结果表明:粗骨料的形状对混凝土损伤性能有一定影响,当骨料形状为凸多边形时,其抗损伤性能最弱;混凝土的抗损伤性能随着ITZ强度的降低而减弱,当ITZ的强度高于砂浆的60%时,抗损伤性能逐渐增强;随着ITZ厚度的增加,混凝土的抗损伤能力减弱。

     

  • 图  不同形状的随机骨料模型

    Figure  1.  Random aggregate models of different shapes

    图  混凝土拉伸和压缩应力-应变曲线

    Figure  2.  Tensile and compressive stress-strain curves of concrete

    图  超声波激励信号

    Figure  3.  Ultrasonic excitation signal

    图  模拟试验的损伤裂纹分布

    Figure  4.  Damage crack distributions of simulation tests

    图  超声动载荷试验与裂纹分布

    Figure  5.  Ultrasonic dynamic load experiment and crack distribution

    图  不同骨料形状的损伤应力

    Figure  6.  Damage stress for different aggregate shapes

    图  不同ITZ强度的损伤应力

    Figure  7.  Damage stress maps of different ITZ intensities

    图  不同ITZ厚度的损伤应力

    Figure  8.  Damage stress maps of different ITZ thicknesses

    表  1  混凝土各相材料参数

    Table  1.   Concrete material parameters of each phase

    MaterialElastic model/GPaPoisson′s ratio μBulk density t/m3Expansion angle/(°)Flow potential offset εRatio of double and uniaxial compressive strength αfConstant stress ratio Kc
    Aggregate30.000.1672.6
    Mortar10.660.1672.1300.11.160.666 7
    ITZ0.1672.1300.11.160.666 7
    下载: 导出CSV
  • [1] 陈惠苏, 孙伟, STROEVEN P. 水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素 [J]. 硅酸盐学报, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013

    CHEN H S, SUN W, STROEVEN P. Interfacial transition zone between aggregate and paste in cementitious composites (Ⅱ): mechanism of formation and degradation of interfacial transition zone microstructure, and its influence factors [J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 70–79. doi: 10.3321/j.issn:0454-5648.2004.01.013
    [2] 徐晶, 王先志. 纳米二氧化硅对混凝土界面过渡区的改性机制及其多尺度模型 [J]. 硅酸盐学报, 2018, 46(8): 1053–1058.

    XU J, WANG X Z. Effect of nano-silica modification on interfacial transition zone in concrete and its multiscale modelling [J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1053–1058.
    [3] YANG C C, CHO S W. Approximate migration coefficient of percolated interfacial transition zone by using the accelerated chloride migration test [J]. Cement and Concrete Research, 2005, 35: 344–350. doi: 10.1016/j.cemconres.2004.05.038
    [4] AQUINO M J, LI Z, SHAH S P. Mechanical properties of the aggregate and cement interface [J]. Advanced Cement Based Materials, 1995, 2(6): 211–223. doi: 10.1016/1065-7355(95)90040-3
    [5] LEE K M, PARK J H. A numerical model for elastic modulus of concrete considering interfacial transition zone [J]. Cement and Concrete Research, 2008, 38(3): 396–402. doi: 10.1016/j.cemconres.2007.09.019
    [6] 王怀亮, 宋玉普. 多轴应力状态下混凝土的动态强度准则 [J]. 哈尔滨工业大学学报, 2014, 46(4): 93–97.

    WANG H L, SONG Y P. A dynamic strength criterion of concrete under multiaxial stress state [J]. Journal of Harbin Institute of Technology, 2014, 46(4): 93–97.
    [7] 杜修力, 金浏. 考虑过渡区界面影响的混凝土宏观力学性质研究 [J]. 工程力学, 2012, 29(12): 72–79. doi: 10.6052/j.issn.1000-4750.2011.04.0216

    DU X L, JIN L. Research on the influence of interfacial transition zone on the macro-mechanical properties of concrete [J]. Engineering Mechanics, 2012, 29(12): 72–79. doi: 10.6052/j.issn.1000-4750.2011.04.0216
    [8] 王哲. 沿应变路径准静态加载时混凝土的极限状态现象 [J]. 北京交通大学学报, 2010, 34(1): 30–34. doi: 10.3969/j.issn.1673-0291.2010.01.007

    WANG Z. Phenomena of concrete limit state under quasi-static loading along strain paths [J]. Journal of Beijing Jiaotong University, 2010, 34(1): 30–34. doi: 10.3969/j.issn.1673-0291.2010.01.007
    [9] GUINEA G V, EL-SAYED K, ROCCO C G, et al. The effect of the bond between the matrix and the aggregates on the cracking mechanism and fracture parameters of concrete [J]. Cement and Concrete Research, 2002, 32(12): 1961–1970. doi: 10.1016/S0008-8846(02)00902-X
    [10] 马巍, 任建伟, 胡俊, 等. 基于不同加载制度的轻骨料混凝土动态冲击性能 [J]. 硅酸盐通报, 2019, 38(4): 974–982.

    MA W, REN J W, HU J, et al. Dynamical shocking property of light-weighting aggregates concrete based on impact loading regimes [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 974–982.
    [11] 阮欣, 李越, 金泽人, 等. 混凝土二维细观骨料建模方法综述 [J]. 同济大学学报(自然科学版), 2018, 46(5): 604–612.

    RUAN X, LI Y, JIN Z R, et al. Review of two-dimensional meso-modeling methods of concrete aggregate [J]. Journal of Tongji University (Natural Science), 2018, 46(5): 604–612.
    [12] 刘建南, 张昌锁. 过渡区界面对混凝土劈裂性能影响的试验与数值模拟 [J]. 科学技术与工程, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044

    LIU J N, ZHANG C S. Experiment and numerical simulation on the influence of interfacial transition zone on concrete splitting performance [J]. Science Technology and Engineering, 2018, 18(18): 269–274. doi: 10.3969/j.issn.1671-1815.2018.18.044
    [13] YANG C C. Effect of the interfacial transition zone on the transport and the elastic properties of mortar [J]. Magazine of Concrete Research, 2003, 55(4): 305–312. doi: 10.1680/macr.2003.55.4.305
    [14] 过镇海, 李卫. 混凝土在不同应力-温度途径下的变形试验和本构关系 [J]. 土木工程学报, 1993, 26(5): 58–69. doi: 10.3321/j.issn:1000-131X.1993.05.001

    GUO Z H, LI W. Deformation testing and constitutive relationship of concrete under different stress-temperature paths [J]. China Civil Engineering Journal, 1993, 26(5): 58–69. doi: 10.3321/j.issn:1000-131X.1993.05.001
    [15] 刘海峰, 韩莉. 二维骨料随机分布混凝土的动态力学性能数值模拟 [J]. 高压物理学报, 2016, 30(3): 191–199. doi: 10.11858/gywlxb.2016.03.003

    LIU H F, HAN L. Numerical simulation of dynamic mechanical behavior of concrete with two-dimensional random distribution of coarse aggregate [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191–199. doi: 10.11858/gywlxb.2016.03.003
    [16] 蒋橙炜, 陈启东, 顾泽堃. 超声破碎混凝土的力学模型与仿真分析 [J]. 机械制造与自动化, 2019, 48(2): 84–88.

    JIANG C W, CHEN Q D, GU Z K. Mechanical model and simulation analysis of ultrasonic crushed concrete [J]. Machine Building & Automation, 2019, 48(2): 84–88.
    [17] WEIBULL W. A statistical distributions function of wide applicability [J]. Journal of Applied Mechanics, 1951, 18: 293–297.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7548
  • HTML全文浏览量:  2936
  • PDF下载量:  23
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2019-09-29

目录

    /

    返回文章
    返回