冲击作用下框架结构的连续性倒塌性能

宿华祥 易伟建 黄义谋

宿华祥, 易伟建, 黄义谋. 冲击作用下框架结构的连续性倒塌性能[J]. 高压物理学报, 2020, 34(3): 034201. doi: 10.11858/gywlxb.20190806
引用本文: 宿华祥, 易伟建, 黄义谋. 冲击作用下框架结构的连续性倒塌性能[J]. 高压物理学报, 2020, 34(3): 034201. doi: 10.11858/gywlxb.20190806
SU Huaxiang, YI Weijian, HUANG Yimou. Continuous Collapse Behavior of Frame Structures under Impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034201. doi: 10.11858/gywlxb.20190806
Citation: SU Huaxiang, YI Weijian, HUANG Yimou. Continuous Collapse Behavior of Frame Structures under Impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034201. doi: 10.11858/gywlxb.20190806

冲击作用下框架结构的连续性倒塌性能

doi: 10.11858/gywlxb.20190806
基金项目: 国家重点研发计划(2016YFC0701405)
详细信息
    作者简介:

    宿华祥(1992–),男,硕士研究生,主要从事钢筋混凝土结构抗冲击性能研究. E-mail:15575888135@163.com

    通讯作者:

    易伟建(1954–),男,博士,教授,主要从事混凝土结构基本理论研究. E-mail:wjyi@hnu.edu.cn

  • 中图分类号: O347.3

Continuous Collapse Behavior of Frame Structures under Impact

  • 摘要: 借助ANSYS/LS-DYNA软件建立了钢筋混凝土框架的有限元模型,研究了钢筋混凝土框架在冲击荷载作用下的连续性倒塌性能,冲击体质量为1 000 kg,冲击速度为4 m/s。通过对钢筋混凝土构件冲击试验和框架倒塌过程的验证,保证了数值模拟的有效性。分析结果表明:冲击中柱后结构倒塌过程中,有“拱作用”向“悬索作用”转换的机制,中柱顶部位移先向上后向下,边柱顶部位移先向外后向内;同样冲击作用下,柱轴力越小,则抗冲击能力越强,不同的偏压作用对柱的抗冲击性能的影响不同;加密柱箍筋能够增强钢筋混凝土柱的抗冲击能力,延缓甚至避免钢筋混凝土框架结构的连续性倒塌。

     

  • 图  试验框架尺寸、配筋与测试仪器布置(单位:mm)

    Figure  1.  Detailed drawing of test frame size, reinforcement and arrangement of test instruments(Unit: mm)

    图  钢筋混凝土框架有限元模型

    Figure  2.  Finite element model of reinforced concrete frame

    图  A-1、A-2梁跨中挠度时程曲线(a)和损伤比较(b)

    Figure  3.  Comparison of deflection time history curves (a) and damage (b) between A-1 and A-2 beams in midspan

    图  荷载曲线

    Figure  4.  Load curve

    图  框架模拟与试验对比

    Figure  5.  Frame simulation results vs. experiment

    图  框架倒塌过程中变形损伤

    Figure  6.  Damage deformation of the frame collapse

    图  框架模型及受荷

    Figure  7.  Frame model and loading

    图  中柱柱顶竖向位移时程曲线

    Figure  8.  Curve of vertical displacement vs. time at the top of central column

    图  A柱、E柱柱顶水平位移时程曲线

    Figure  9.  Curves of horizontal displacement vs. time at the top of the column A and E

    图  10  A柱、E柱水平位移平均值时程曲线

    Figure  10.  Curve of average horizontal displacement vs. time of the column A and E

    图  11  水平位移与中柱竖向位移关系曲线

    Figure  11.  Relationship between horizontal displacement and vertical displacement of central column

    图  12  框架在冲击作用下的倒塌过程

    Figure  12.  Collapse process of frame under impact

    图  13  柱子受到冲击作用后的框架响应

    Figure  13.  Frame response of columns under impact

    图  14  A柱冲击作用点水平位移时程曲线

    Figure  14.  Curve of horizontal displacement vs. time at impact point of the column A

    图  15  加密箍筋后框架最终变形

    Figure  15.  Final deformation of frame with encrypted stirrups

    图  16  加密箍筋后冲击点处X方向位移时程曲线

    Figure  16.  Curve of X-direction displacement vs. time at impact point after encrypted stirrups

    表  1  材料本构模型及参数[8]

    Table  1.   Constitutive model and material parameters[8]

    PartsMaterial modelMaterial parameters
    Hammer*MAT_ELASTICρ = 7 800 kg/m3, E = 200 GPa, ν = 0.27
    Concrete*MAT_CSCMρ = 2 400 kg/m3, fc = 25 MPa, d = 20 mm
    Distributed reinforcement*MAT_PLASTIC_KINEMATICρ = 7 800 kg/m3, E = 200 GPa, ν = 0.27,
    fy = 416 MPa, fu = 526 MPa
    Stirrups*MAT_PLASTIC_KINEMATICρ = 7 800 kg/m3, E = 210 GPa, ν = 0.27,
    fy = 370 MPa
    下载: 导出CSV

    表  2  梁跨中最大位移比较

    Table  2.   Largest displacement comparison

    Beam No.Maximum displacement/mmRelative error/%
    ExperimentSimulation
    A-181.082.82.22
    A-274.074.00
    A-383.690.68.37
    A-489.586.6−3.24
    下载: 导出CSV

    表  3  不同失效时间对应的动力系数

    Table  3.   Dynamic coefficients at different failure time

    t1/sμt1/sμt1/sμt1/sμ
    0.0012.0000.0201.8320.0601.0140.1501.128
    0.0051.9890.0401.4260.0611.0031.000
    0.0101.9560.0451.3140.0901.215
    下载: 导出CSV

    表  4  框架倒塌范围汇总

    Table  4.   Summary of frame collapse scope

    Column No.Collapse scope
    ANo collapse
    BAB span and BC span
    CAll
    DCD span and DE span
    EDE span
    下载: 导出CSV
  • [1] SOROUSHIAN P, CHOI K B. Steel mechanical properties at different strain rates [J]. Journal of Structural Engineering, 1987, 113(4): 663–672. doi: 10.1061/(ASCE)0733-9445(1987)113:4(663)
    [2] 李杰, 任晓丹. 混凝土静力与动力损伤本构模型研究进展述评 [J]. 力学进展, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043

    LI J, REN X D. A review on the constitutive model for static and dynamic damage of concrete [J]. Advances in Mechanics, 2010, 40(3): 284–297. doi: 10.6052/1000-0992-2010-3-J2008-043
    [3] DO T V, PHAM T M, HAO H. Dynamic responses and failure modes of bridge columns under vehicle collision [J]. Engineering Structures, 2018, 156(1): 243–259.
    [4] 刘飞, 罗旗帜, 严波, 等. RC柱破坏模式的数值模拟研究 [J]. 振动与冲击, 2017, 36(16): 122–127.

    LIU F, LUO Q Z, YAN B, et al. Numerical study on the failure of RC column subjected to lateral impact [J]. Journal of Vibration and Shock, 2017, 36(16): 122–127.
    [5] 史先达. 钢筋混凝土剪力墙平面外抗冲击性能试验与数值分析 [D]. 长沙: 湖南大学, 2016.

    SHI X D. Experiment and numerical analysis of reinforced concrete shear wall out-of-plane impact [D]. Changsha: Hunan University, 2016.
    [6] 宿华祥, 易伟建. 钢筋混凝土墙抗冲击性能数值模拟分析 [J]. 高压物理学报, 2019, 34(1): 014201. doi: 10.11858/gywlxb.20180532

    SU H X, YI W J. Numerical simulation analysis of impact resistance of reinforced concrete wall [J]. Chinese Journal of High Pressure Physics, 2019, 34(1): 014201. doi: 10.11858/gywlxb.20180532
    [7] 陆新征, 江见鲸. 世界贸易中心飞机撞击后倒塌过程的仿真分析 [J]. 土木工程学报, 2001, 34(6): 8–10. doi: 10.3321/j.issn:1000-131X.2001.06.002

    LU X Z, JIANG J J. Dynamic finite element simulation for the collapse of world trade center [J]. China Civil Engineering Jounal, 2001, 34(6): 8–10. doi: 10.3321/j.issn:1000-131X.2001.06.002
    [8] 何庆锋. 钢筋混凝土框架结构抗倒塌性能试验研究 [D]. 长沙: 湖南大学, 2009.

    HE Q F. Experimental study on collapse resistance of reinforced concrete frame structures [D]. Changsha: Hunan University, 2009.
    [9] JIAN H, ZHENG Y. Simplified models of progressice collapse response and progressive collapae-resisting capacity curve of RC beam-column substructures [J]. Journal of Performance of Constructed Facilities, 2014, 28(4): 1–7.
    [10] 李凤武. 钢筋混凝土框架柱突然失效试验研究 [D]. 长沙: 湖南大学, 2014.

    LI F W. Experimental study on sudden failure of reinforced concrete frame columns [D]. Changsha: Hunan University, 2014.
    [11] VAUGHAN D, MILNER D, GRAN J. New methods for progressive collapse testing and simulation [J]. Structures Congress 2011-Proceedings of the 2011 Structures Congress, 2011, 50(21): 2358–2369.
    [12] 罗维刚, 黑晓丹, 刘纪斌, 等. 考虑楼板影响的RC框架结构连续性倒塌动力响应分析 [J]. 建筑科学与工程学报, 2018, 35(4): 113–119. doi: 10.3969/j.issn.1673-2049.2018.04.015

    LUO W G, HEI X D, LIU J B, et al. Dynamic response analysis of RC frame structures with continuous collapse considering floor effects [J]. Journal of Architecture and Civil Engineering, 2018, 35(4): 113–119. doi: 10.3969/j.issn.1673-2049.2018.04.015
    [13] KANG H, KIM J. Progressice collapse of steel moment frames subjected to vehicle impact [J]. Journal of Performance of Constructed Facilities, 2014, 29(6): 04014172.
    [14] SASANI M, KAZEMI A, SAGIROGLU S, et al. Progressive collapse resistance of an actual 11-story structure subjectied to severe initial damage [J]. Journal of Structural Engineering, 2011, 137(9): 893–902. doi: 10.1061/(ASCE)ST.1943-541X.0000418
    [15] SASANI M, SAGIROGLU S. Progressive collapse resistance of hotel San Diego [J]. Journal of Structure Engineering, 2008, 134(3): 478–488. doi: 10.1061/(ASCE)0733-9445(2008)134:3(478)
    [16] WU Y, CRAWFORD J E, MAGALLANES J M. Performence of LS-DYNA concrete constitutive models [C]//12th International LS-DYNA Users Conference, 2012(1): 1–14.
    [17] 赵德博, 易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究 [J]. 振动与冲击, 2015, 34(11): 139–145.

    ZHAO D B, YI W J. Anti-impact behavior and design method for RC beams [J]. Journal of Vibration and Shock, 2015, 34(11): 139–145.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  6178
  • HTML全文浏览量:  2594
  • PDF下载量:  30
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-07-22
  • 发布日期:  2020-03-25

目录

    /

    返回文章
    返回