枪弹间隙对水下枪内弹道的影响

孟祥宇 侯健 秦一平 廖斐 鲁春佳

孟祥宇, 侯健, 秦一平, 廖斐, 鲁春佳. 枪弹间隙对水下枪内弹道的影响[J]. 高压物理学报, 2020, 34(3): 035101. doi: 10.11858/gywlxb.20190805
引用本文: 孟祥宇, 侯健, 秦一平, 廖斐, 鲁春佳. 枪弹间隙对水下枪内弹道的影响[J]. 高压物理学报, 2020, 34(3): 035101. doi: 10.11858/gywlxb.20190805
MENG Xiangyu, HOU Jian, QIN Yiping, LIAO Fei, LU Chunjia. Influence of Interior Ballistics for Underwater Guns with Gun-Bullet Coupling Gap[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035101. doi: 10.11858/gywlxb.20190805
Citation: MENG Xiangyu, HOU Jian, QIN Yiping, LIAO Fei, LU Chunjia. Influence of Interior Ballistics for Underwater Guns with Gun-Bullet Coupling Gap[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 035101. doi: 10.11858/gywlxb.20190805

枪弹间隙对水下枪内弹道的影响

doi: 10.11858/gywlxb.20190805
详细信息
    作者简介:

    孟祥宇(1995-),男,硕士研究生,主要从事兵器发射与动力推进技术研究.E-mail: 1572981686@qq.com

  • 中图分类号: O389; TJ302

Influence of Interior Ballistics for Underwater Guns with Gun-Bullet Coupling Gap

  • 摘要: 为了研究枪炮全水下发射过程中枪弹耦合间隙对内弹道特性的影响,运用AUTODYN有限元仿真软件,针对滑膛水下枪枪弹耦合设置0.1 mm间隙与不设置间隙两种情况的内弹道过程进行了数值模拟;采用21、25和30 g装药量对水下枪全水下带间隙发射内弹道过程进行了仿真分析,获得了膛压、射弹速度以及过间隙燃气射流在内弹道过程中组分、压力与速度的分布规律;并设计了实弹射击实验用于验证仿真结果。仿真和实验结果表明,合适的枪炮耦合间隙能够有效地提高水下枪发射性能。当枪弹耦合设置0.1 mm间隙时,采用3种装药量发射均能产生弹前气幕,内弹道过程膛压下降明显,弹丸炮口速度提升较为显著,有利于产生稳定的超空泡包裹弹体,使其在水下运动时所受阻力大大降低,从而增加射弹水下行程。

     

  • 图  水下枪枪弹耦合带间隙发射物理模型

    Figure  1.  Physical model of underwater gun-bomb coupling gap launch

    图  水下枪带间隙发射计算域

    Figure  2.  Computational domain of underwater gap launch

    图  网格无关性验证

    Figure  3.  Grid independence verification

    图  网格划分示意图

    Figure  4.  Diagram of meshing

    图  2.5 ms时刻内弹道组分分布

    Figure  5.  Internal ballistic component distribution at 2.5 ms

    图  无间隙与间隙0.1 mm两种情况的内弹道参数变化曲线

    Figure  6.  Variation curves of internal ballistic parameters of the launching with no gap and 0.1 mm gap

    图  不同装药情况下内弹道参数变化曲线

    Figure  7.  Variation curves of internal ballistic parameters of the launching with different propellants

    图  膛内气液组分分布

    Figure  8.  Distribution of gas and liquid components in the crucible

    图  气液流速分布

    Figure  9.  Gas-liquid flow rate distribution

    图  10  压力云图

    Figure  10.  Pressure distribution

    图  11  实验系统示意图

    Figure  11.  Schematic of experiment system

    图  12  测试系统框图

    Figure  12.  Diagram of testing system

    图  13  线圈靶测速原理

    Figure  13.  Principle of magnetic velocity measurement

    图  14  有、无间隙两种情况下膛压的测试曲线

    Figure  14.  Pressure curve of the launching with no gap and 0.1 mm gap

    图  15  测速系统及高速摄影结果

    Figure  15.  Results of speed measuring system and high speed camera

    图  16  不同装药量条件下膛压测试曲线

    Figure  16.  Pressure curve of different propellants

    图  17  膛压仿真测试对比曲线

    Figure  17.  Pressure comparison of simulation and experiment

    表  1  发射药材料参数

    Table  1.   Material parameters of propellant

    Reacted EOS
    G/mm–1cC1/(m·s–1)C2D/(g·cm–3)eg·ρref/(GJ·m–3)
    52.170.550001.003 31.88
    Solid unreacted EOSStrength: von Mises
    Bulk modulus/
    GPa
    Tref/KSpecific heat/
    (J·kg–1·K–1)
    κ /
    (W·m–1·K–1)
    Shear modulus/
    GPa
    Yield stress/
    MPa
    13.5293001.382
    Strength: von MisesCut offs
    Maximum temperature/Kρref/(g·cm–3)Maximum
    expansion
    Minimum density factorMinimum sound
    speed/(m·s–1)
    Maximum sound
    speed/(m·s–1)
    1.01 × 10201.860.011 × 10–41 × 10–61 × 104
    Exponential
    pg/kPab/(m·s–1)ρs/(g·cm–3)γ
    1.00 × 10–5 0.007 11 × 10–61
    2.50 × 106 2.043 211
    5.00 × 106 3.869 221
    7.50 × 106 5.623 631
    1.00 × 107 7.332 941
    1.25 × 107 9.009 551
    1.50 × 107 10.660 661
    1.75 × 107 12.290 671
    2.00 × 107 13.902 981
    1.00 × 109515.278 091
    下载: 导出CSV

    表  2  AUTODYN 程序提供的水多项式状态方程参数

    Table  2.   The polymerization EOS parameters of water provided by the AUTODYN program

    A1/GPaA2/GPaA3/GPaT1/GPaT2/GPaB0B1
    2.29.5414.572.200.280.28
    下载: 导出CSV

    表  3  水下射弹实验与数值计算结果

    Table  3.   Experiment and numerical calculation results of underwater launch

    Propellant/
    g
    Experimental resultsSimulation results
    Exp. No.Maximum pressure/
    MPa
    Velocity before
    the muzzle
    (1 m)/(m·s–1)
    Muzzle velocity/
    (m·s–1)
    Average pressure/
    MPa
    Average velocity/
    (m·s–1)
    Maximum pressure/
    MPa
    Muzzle velocity/
    (m·s–1)
    211209.9638.6659.8217.8667.1223.5671.7
    2225.7651.4674.3
    251253.6771.5796.1250.7799.9271.3814.2
    2247.8778.2803.7
    301413.8842.7879.2427.8888.0422.9883.5
    2441.7865.8896.7
    下载: 导出CSV
  • [1] 魏平, 侯健, 杨柯. 超空泡射弹研究综述 [J]. 舰船电子工程, 2008(4): 13–17. doi: 10.3969/j.issn.1627-9730.2008.04.004

    WEI P, HOU J, YANG K, et al. Summary of supercavitating projectile researches [J]. Ship Electronic Engineering, 2008(4): 13–17. doi: 10.3969/j.issn.1627-9730.2008.04.004
    [2] 梅雄三. 某水下炮发射口密封特性的分析 [D].南京: 南京理工大学, 2017: 64–65.

    MEI X S. Analysis of sealing characteristics of underwater gun muzzle [D]. Nanjing: Nanjing University of Science & Technology, 2017: 64–65.
    [3] 张学伟. 水下超空泡射弹运动仿真与弹道特性分析 [D].太原: 中北大学, 2017: 32–43.

    ZHANG X W. Motion simulation and ballistic characteristics analysis of underwater supercavitating projectile [D]. Taiyuan: North University of China, 2017: 32–43.
    [4] HOEFELE E O, BRIMACOMBE J K. Flow regimes in submerged gas injection [J]. Metallurgical Transactions B (Process Metallurgy), 1979, 10(4): 631–648. doi: 10.1007/BF02662566
    [5] MORI K, OZAWA Y, SANO M. Characterization of gas jet behavior at a submerged orifice in liquid metal [J]. Transactions of the Iron and Steel Institute of Japan, 1982, 22: 377–384. doi: 10.2355/isijinternational1966.22.377
    [6] 施红辉, 郭强, 王超, 等. 水下超音速气体射流胀鼓和回击的关联性研究 [J]. 力学学报, 2010, 42(6): 1206–1210.

    SHI H H, GUO Q, WANG C, et al. Experiments on the relationship between bulging and back-attack of submerged supersonic gas jets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1206–1210.
    [7] 薛晓春, 余永刚, 张琦, 等. 渐扩边界形状对双股燃气射流扩展特性影响的实验研究 [J]. 弹道学报, 2013, 25(2): 44–47, 64. doi: 10.3969/j.issn.1004-499X.2013.02.009

    XUE X C, YU Y G, ZHANG Q, et al. Experimental study on effects of stepped-wall boundary on expansion characteristic of twin combustion-gas jets [J]. Journal of Ballistics, 2013, 25(2): 44–47, 64. doi: 10.3969/j.issn.1004-499X.2013.02.009
    [8] 薛晓春, 余永刚, 张琦. 双股燃气射流在充液室内扩展特性的实验研究 [J]. 爆炸与冲击, 2013, 33(5): 449–455. doi: 10.3969/j.issn.1001-1455.2013.05.001

    XUE X C, YU Y G, ZHANG Q. Experimental study on expansion characteristics of twin combustion-gas jets in liquid-filled chambers [J]. Explosion and Shock Waves, 2013, 33(5): 449–455. doi: 10.3969/j.issn.1001-1455.2013.05.001
    [9] 薛晓春, 余永刚, 张琦, 等. 双束燃气射流与整装式液体装药相互作用的实验和数值模拟 [J]. 兵工学报, 2013, 34(6): 669–677.

    XUE X C, YU Y G, ZHANG Q, et al. Experiment and numerical simulation for interaction of twin gas jets and bulk-loaded liquid charge [J]. Acta Armamentarii, 2013, 34(6): 669–677.
    [10] 冯博声, 薛晓春. 四股燃气射流在整装式液体中扩展特性的实验研究 [J]. 含能材料, 2017, 25(12): 1004–1010. doi: 10.11943/j.issn.1006-9941.2017.12.006

    FENG B S, XUE X C. Experimental study on expansion characteristics of four combustion gas jet in bulk-loaded liquid [J]. Chinese Journal of Energetic Materials, 2017, 25(12): 1004–1010. doi: 10.11943/j.issn.1006-9941.2017.12.006
    [11] WEILAND C, VLACHOS P P. Round gas jets submerged in water [J]. International Journal of Multiphase Flow, 2013, 48: 46–57.
    [12] 陈启林.水下燃气射流数值仿真与试验研究 [D].北京: 北京理工大学, 2016: 55–56.

    CHEN Q L. The Numerical simulation and experimental research on underwater gas jet [D]. Beijing: Beijing Institute of Technology, 2016: 55–56.
    [13] 汤龙生, 刘宇, 吴智锋, 等. 水下超声速燃气射流气泡的生长及压力波传播特性实验研究 [J]. 推进技术, 2011, 32(3): 417–420.

    TANG L S, LIU Y, WU Z F, et al. Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets under water [J]. Journal of Propulsion Technology, 2011, 32(3): 417–420.
    [14] 周良梁, 余永刚, 曹永杰. 喷射结构对充液圆管内气幕特性影响的数值分析 [J]. 含能材料, 2016, 24(7): 657–663. doi: 10.11943/j.issn.1006-9941.2016.07.006

    ZHOU L L, YU Y G, CAO Y J. Influence of injection structure on gas-curtain generation characteristics in liquid tube by numerical analysis [J]. Chinese Journal of Energetic Materials, 2016, 24(7): 657–663. doi: 10.11943/j.issn.1006-9941.2016.07.006
    [15] 周良梁, 余永刚. 喷头运动对水下气幕生成特性影响的研究 [J]. 推进技术, 2017(4): 239–245.

    ZHOU L L, YU Y G. Study of sprayer movement influence on underwater gas-curtain generation characteristics [J]. Journal of Propulsion Technology, 2017(4): 239–245.
    [16] 赵嘉俊, 余永刚. 侧喷孔分布对多股燃气射流在充液室中扩展特性的影响 [J]. 工程力学, 2017(7): 247–254.

    ZHAO J J, YU Y G. Effects of the distribution of lateral orifices on expansion of multiple combustion gas jets in water-filled chamber [J]. Engineering Mechanics, 2017(7): 247–254.
    [17] 赵嘉俊, 余永刚. 柱形充液室内多股燃气射流流场的气体与液体两相流场演化特性 [J]. 兵工学报, 2016, 37(10): 1852–1859. doi: 10.3969/j.issn.1000-1093.2016.10.012

    ZHAO J J, YU Y G. The evolution of gas-liquid flow of multiple combustion gas jets in a cylindrical water-filled chamber [J]. Acta Armamentarii, 2016, 37(10): 1852–1859. doi: 10.3969/j.issn.1000-1093.2016.10.012
    [18] 赵嘉俊, 余永刚. 锥形多股火药燃气射流与液体工质相互作用的实验研究 [J]. 含能材料, 2015, 23(11): 1055–1060. doi: 10.11943/j.issn.1006-9941.2015.11.004

    ZHAO J J, YU Y G. Interaction between cone-shaped multiple combustion gas jets and liquid [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1055–1060. doi: 10.11943/j.issn.1006-9941.2015.11.004
    [19] 秦会国, 马峰, 仲霄, 等. 水中弹药的电磁感应测速方法研究 [J]. 测试技术学报, 2012, 26(4): 281–287.

    QIN H G, MA F, ZHONG X, et al. Velocity measurement method of underwater projectile based on electromagnetic induction [J]. Journal of Test and Measurement Technology, 2012, 26(4): 281–287.
    [20] 黄闯. 跨声速超空泡射弹的弹道特性研究 [D]. 西安: 西北工业大学, 2017: 117–126.

    HUANG C. Research of trajectory characteristics of supersonic-supercavitating projectiles [D]. Xi’an: Northwestern Polytechnical University, 2017: 117–126.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  8044
  • HTML全文浏览量:  2952
  • PDF下载量:  24
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-07-30

目录

    /

    返回文章
    返回