高压下单晶橄榄石的电导率

田浩然 徐良旭 李娜娜 张茜 林俊孚 刘锦

田浩然, 徐良旭, 李娜娜, 张茜, 林俊孚, 刘锦. 高压下单晶橄榄石的电导率[J]. 高压物理学报, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775
引用本文: 田浩然, 徐良旭, 李娜娜, 张茜, 林俊孚, 刘锦. 高压下单晶橄榄石的电导率[J]. 高压物理学报, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775
TIAN Haoran, XU Liangxu, LI Nana, ZHANG Qian, LIN Junfu, LIU Jin. High-Pressure Electrical Conductivity of Single-Crystal Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775
Citation: TIAN Haoran, XU Liangxu, LI Nana, ZHANG Qian, LIN Junfu, LIU Jin. High-Pressure Electrical Conductivity of Single-Crystal Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775

高压下单晶橄榄石的电导率

doi: 10.11858/gywlxb.20190775
基金项目: 国家自然科学基金(U1530402)
详细信息
    作者简介:

    田浩然(1993-),男,硕士研究生,主要从事矿物物理学研究. E-mail:haoran.tian@hpstar.ac.cn

    通讯作者:

    刘 锦(1984-),男,博士,研究员,主要从事地球深部结构与物质组成研究. E-mail:jin.liu@hpstar.ac.cn

  • 中图分类号: O732; P574.1

High-Pressure Electrical Conductivity of Single-Crystal Olivine

  • 摘要: 以圣卡洛斯(San Carlos)单晶橄榄石为研究对象,结合交流阻抗谱和金刚石对顶砧(DAC)技术,在300 K、0~19 GPa条件下对其电导率的各向异性进行系统研究。压力标定根据红宝石荧光谱线的漂移以及硅油的拉曼光谱。实验结果表明:在300 K、0~19 GPa条件下,橄榄石[100]方向上的电导率最大,从3.8×10–8 S/m增加到9.0×10–8 S/m,[010]与[001]方向上的电导率接近,约为[100]方向电导率的1/2~1/3;橄榄石电导率随着压力线性增加,其中[100]方向的电导率随着压力变化的斜率最大。在室温条件下,橄榄石主要的导电机制是小极化子导电,且具有负的活化体积。研究结果表明,在含水量较低的上地幔区域,随着深度增加,压力效应可能导致电导率横向和纵向的不均一性增强。

     

  • 图  (a)DAC中样品、电极俯视图;(b)[100]方向橄榄石样品显微图像;(c)DAC横截面图;(d)四电极法样品显微图像

    Figure  1.  (a) Top view of the sample and electrodes in a DAC; (b) Microscopic image of the olivine sample along [100] direction;(c) Cross section view of DAC; (d) Microscopic image of the sample and electrodes using the four-probe method

    图  PMX-200硅油v2 906拉曼频移与压力关系

    Figure  2.  The relation between pressure and Raman shift of v2 906

    图  橄榄石的代表性阻抗谱及其等效电路

    Figure  3.  Representative impedance spectra and equivalent circuit

    图  300 K下橄榄石单晶的电导率随压力的变化

    Figure  4.  The conductivity of the single-crystal olivine as a function of pressure at 300 K

    图  橄榄石的平均电导率随压力的变化

    Figure  5.  Electrical conductivity of olivine aggregates as a function of pressure

    图  橄榄石小极化子导电机制的活化体积随铁含量的变化

    Figure  6.  Total iron content versus activation volume for the small polaron conduction mechanism in olivine

    图  干的橄榄石不同轴向电导率随深度变化曲线

    Figure  7.  Conductivity profile of dry olivine in different orientations

    表  1  样品的EPMA分析结果(质量分数)

    Table  1.   EPMA analysis results of sample (Mass fraction) %

    FeOMgOCaOMnOSiO2Cr2O3NiOTotal
    8.7850.100.070.1140.490.030.3599.94
    下载: 导出CSV

    表  2  样品电阻拟合数据

    Table  2.   Sample resistance fitting data

    [100] direction[010] direction[001] direction
    p/GPaR/GΩp/GPaR/GΩp/GPaR/GΩ
    0 80.80 91.70 88.1
    2.267.2 1.879.0 1.684.1
    3.761.8 5.371.6 3.776.9
    6.257.0 6.661.7 6.369.7
    8.152.0 8.058.1 8.562.1
    10.146.210.157.010.654.3
    12.541.112.751.612.553.2
    14.834.714.750.113.752.1
    18.028.015.844.014.950.3
    19.136.016.849.0
    17.847.1
    下载: 导出CSV
  • [1] LARSEN J C. Low frequency (0.1-6.0 CPD) electromagnetic study of deep mantle electrical conductivity beneath the Hawaiian islands [J]. Geophysical Journal International, 1975, 43(1): 17–46. doi: 10.1111/j.1365-246X.1975.tb00626.x
    [2] FILLOUX J H. Ocean-floor magnetotelluric sounding over North Central Pacific [J]. Nature, 1977, 269(5626): 297–301. doi: 10.1038/269297a0
    [3] OLDENBURG D W. Conductivity structure of oceanic upper mantle beneath the Pacific plate [J]. Geophysical Journal International, 1981, 65(2): 359–394. doi: 10.1111/j.1365-246X.1981.tb02717.x
    [4] SHANKLAND T J, O’CONNELL R J, WAFF H S. Geophysical constraints on partial melt in the upper mantle [J]. Reviews of Geophysics, 1981, 19(3): 394–406. doi: 10.1029/RG019i003p00394
    [5] EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014
    [6] NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere-asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939
    [7] GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446
    [8] KARATO S I. The role of hydrogen in the electrical conductivity of the upper mantle [J]. Nature, 1990, 347(6290): 272–273. doi: 10.1038/347272a0
    [9] WANG D, MOOKHERJEE M, XU Y, et al. The effect of water on the electrical conductivity of olivine [J]. Nature, 2006, 443(7114): 977–980. doi: 10.1038/nature05256
    [10] YOSHINO T, MATSUZAKI T, YAMASHITA S, et al. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere [J]. Nature, 2006, 443(7114): 973–976. doi: 10.1038/nature05223
    [11] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al. The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle [J]. Earth and Planetary Science Letters, 2009, 288(1/2): 291–300.
    [12] POE B T, ROMANO C, NESTOLA F, et al. Electrical conductivity anisotropy of dry and hydrous olivine at 8 GPa [J]. Physics of the Earth and Planetary Interiors, 2010, 181(3/4): 103–111.
    [13] DUBA A G, SHANKLAND T J. Free carbon & electrical conductivity in the Earth’s mantle [J]. Geophysical Research Letters, 1982, 9(11): 1271–1274. doi: 10.1029/GL009i011p01271
    [14] LASTOVICKOVÁ M. A review of laboratory measurements of the electrical conductivity of rocks and minerals [J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2): 1–11.
    [15] DAI L, KARATO S. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine [J]. Earth and Planetary Science Letters, 2014, 408: 79–86. doi: 10.1016/j.jpgl.2014.10.003
    [16] DAI L, KARATO S. The effect of pressure on the electrical conductivity of olivine under the hydrogen-rich conditions [J]. Physics of the Earth and Planetary Interiors, 2014, 232: 51–56. doi: 10.1016/j.pepi.2014.03.010
    [17] YANG X. Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle [J]. Earth and Planetary Science Letters, 2012, 317: 241–250.
    [18] XU Y, SHANKLAND T J, DUBA A G. Pressure effect on electrical conductivity of mantle olivine [J]. Physics of the Earth and Planetary Interiors, 2000, 118(1/2): 149–161.
    [19] YOSHINO T, SHIMOJUKU A, SHAN S, et al. Effect of temperature, pressure and iron content on the electrical conductivity of olivine and its high-pressure polymorphs [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8): 205–220.
    [20] YOSHINO T, ZHANG B, RHYMER B, et al. Pressure dependence of electrical conductivity in forsterite [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 158–171. doi: 10.1002/2016JB013555
    [21] BORUP K A, FISCHER K F, BROWN D R, et al. Measuring anisotropic resistivity of single crystals using the van der Pauw technique [J]. Physical Review B, 2015, 92(4): 045210. doi: 10.1103/PhysRevB.92.045210
    [22] SHEN Y, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
    [23] MAO H K, XU J A, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
    [24] 刘锦, 孙樯. 硅油作为压力计的拉曼光谱研究 [J]. 光谱学与光谱分析, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03

    LIU J, SUN Q. Raman spectroscopic study on silicone fluid as pressure gauge [J]. Spectroscopy and Spectral Analysis, 2010, 30(9): 2390–2392. doi: 10.3964/j.issn.1000-0593(2010)09-2390-03
    [25] 王晓霞, 李志慧, 陈晨, 等. 硅油的高压拉曼散射 [J]. 高等学校化学学报, 2014, 35(11): 2384–2389.

    WANG X X, LI Z H, LI C, et al. High pressure Raman spectra of silicone oil [J]. Chemical Journal of Chinese Universities, 2014, 35(11): 2384–2389.
    [26] ROBERTS J J, TYBURCZY J A. Frequency dependent electrical properties of polycrystalline olivine compacts [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B10): 16205–16222. doi: 10.1029/91JB01574
    [27] SINCLAIR D C, WEST A R. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance [J]. Journal of Applied Physics, 1989, 66(8): 3850–3856. doi: 10.1063/1.344049
    [28] JOHNSON D. ZView: a software program for IES analysis. Version 2.8 [CP/OL]. Southern Pines, NC: Scribner Associates [2019-03-05]. http://www.scribner.com.
    [29] ZHA C, DUFFY T S, DOWNS R T, et al. Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa [J]. Earth and Planetary Science Letters, 1998, 159(1/2): 25–33.
    [30] DU FRANE W L, TYBURCZY J A. Deuterium-hydrogen exchange in olivine: implications for point defects and electrical conductivity [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03004.
    [31] GODDAT A, PEYRONNEAU J, POIRIER J P. Dependence on pressure of conduction by hopping of small polarons in minerals of the Earth’s lower mantle [J]. Physics and Chemistry of Minerals, 1999, 27(2): 81–87. doi: 10.1007/s002690050243
    [32] KATSURA T, SATO K, ITO E. Electrical conductivity of silicate perovskite at lower-mantle conditions [J]. Nature, 1998, 395(6701): 493–495. doi: 10.1038/26736
    [33] LIN J F, WEIR S T, JACKSON D D, et al. Electrical conductivity of the lower-mantle ferropericlase across the electronic spin transition [J]. Geophysical Research Letters, 2007, 34(16): L16305.
    [34] OHTA K, HIROSE K, ONODA S, et al. The effect of iron spin transition on electrical conductivity of (Mg,Fe)O magnesiowüstite [J]. Proceedings of the Japan Academy Series B, 2007, 83(3): 97–100. doi: 10.2183/pjab.83.97
    [35] YOSHINO T, ITO E, KATSURA T, et al. Effect of iron content on the spin transition pressure of ferropericlase [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B4): B04202.
    [36] DOBSON D P, RICHMOND N C, BRODHOLT J P. A high-temperature electrical conduction mechanism in the lower mantle phase (Mg, Fe)1- xO [J]. Science, 1997, 275(5307): 1779–1781. doi: 10.1126/science.275.5307.1779
    [37] NEAL S L, MACKIE R L, LARSEN J C, et al. Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B4): 8229–8242. doi: 10.1029/1999JB900447
    [38] TARITS P, HAUTOT S, PERRIER F. Water in the mantle: results from electrical conductivity beneath the French Alps [J]. Geophysical Research Letters, 2004, 31(6): 265–282.
    [39] JUNG H, KARATO S. Water-induced fabric transitions in olivine [J]. Science, 2001, 293: 1460–1463. doi: 10.1126/science.1062235
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  62
  • PDF下载量:  5
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-06-18
  • 发布日期:  2019-09-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回