Volume 33 Issue 3
Jun 2019
Turn off MathJax
Article Contents
DENG Xiaoliang, LI Bo, TANG Guanqing, ZHU Wenjun. Application of Molecular Dynamics Simulation to Dynamic Response of Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750
Citation: DENG Xiaoliang, LI Bo, TANG Guanqing, ZHU Wenjun. Application of Molecular Dynamics Simulation to Dynamic Response of Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. doi: 10.11858/gywlxb.20190750

Application of Molecular Dynamics Simulation to Dynamic Response of Metals

doi: 10.11858/gywlxb.20190750
  • Received Date: 27 Mar 2019
  • Rev Recd Date: 28 Apr 2019
  • With the development of computer science and technology and diagnostic techniques, molecular dynamics (MD) simulation plays an increasingly important role in the field of shock dynamics. This review presents the basic principle of MD firstly, followed by integrated algorithm, inter-atom potentials, and some widely used data processing methods. Then the applications of MD in the plastic deformation of metals, phase transitions, and damage and fracture under shock loading (spallation) are presented in a systematic manner. The shock plasticity is focused on the micro-mechanisms of plastic deformation and the relationship between the deformation process and micro-structures in single crystals, twin crystals, and polycrystals. In terms of shock-induced phase transitions, the iron is taken as an example to emphasize the research focusing on the coupling of shock transitions and shock plasticity. The contents of dynamic damage and fracture mainly cover the void evolution and coalescence, dynamic response of materials under laser loading, and so on. Finally, a brief summary and perspective of MD regarding to future applications are offered, intending to provide the further information for the related researchers.

     

  • loading
  • [1]
    MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, 1994.
    [2]
    ALLEN M P, TILDESLEY D J. Computer simulation of liquids [M]. Oxford: Oxford University Press, 2017.
    [3]
    PEREZ D, LEWIS L J. Ablation of solids under femtosecond laser pulses [J]. Physical Review Letters, 2002, 89(25): 255504. doi: 10.1103/PhysRevLett.89.255504
    [4]
    吴寒, 张楠, 何淼, 等. 氩、铝原子相互作用势的计算及其在飞秒激光烧蚀分子动力学模拟中的应用 [J]. 中国激光, 2016, 43(8): 116–122.

    WU H, ZHANG N, HE M, et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation [J]. Chinese Journal of Lasers, 2016, 43(8): 116–122.
    [5]
    DAW M S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters, 1983, 50(17): 1285–1288. doi: 10.1103/PhysRevLett.50.1285
    [6]
    MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations [J]. Physical Review B, 2001, 63(22): 224106. doi: 10.1103/PhysRevB.63.224106
    [7]
    张邦维. 嵌入原子方法理论及其在材料科学中的应用: 原子尺度材料设计理论[M]. 长沙: 湖南大学出版社, 2003: 245–257.
    [8]
    WANG K, ZHU W, XIAO S, et al. Coupling between plasticity and phase transition of polycrystalline iron under shock compressions [J]. International Journal of Plasticity, 2015, 71: 218–236. doi: 10.1016/j.ijplas.2015.01.002
    [9]
    WANG K, XIAO S, DENG H, et al. An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals [J]. International Journal of Plasticity, 2014, 59: 180–198. doi: 10.1016/j.ijplas.2014.03.007
    [10]
    王昆. 铁冲击塑性与相变的原子模拟[D]. 长沙: 湖南大学, 2015.
    [11]
    KELCHNER C L, PLIMPTON S J, HAMILTON J C. Dislocation nucleation and defect structure during surface indentation [J]. Physical Review B, 1998, 58(17): 11085. doi: 10.1103/PhysRevB.58.11085
    [12]
    FAKEN D, JÓNSSON H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science, 1994, 2(2): 279–286. doi: 10.1016/0927-0256(94)90109-0
    [13]
    REIN TEN WOLDE P, RUIZ-MONTERO M J, FRENKEL D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling [J]. The Journal of Chemical Physics, 1996, 104(24): 9932–9947. doi: 10.1063/1.471721
    [14]
    STUKOWSKI A, BULATOV V V, ARSENLIS A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20(8): 085007. doi: 10.1088/0965-0393/20/8/085007
    [15]
    GERMANN T C, HOLIAN B L, LOMDAHL P S, et al. Dislocation structure behind a shock front in fcc perfect crystals: atomistic simulation results [J]. Metallurgical and Materials Transactions A, 2004, 35(9): 2609–2615. doi: 10.1007/s11661-004-0206-5
    [16]
    LUO S N, AN Q, GERMANN T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. Journal of Applied Physics, 2009, 106(1): 013502. doi: 10.1063/1.3158062
    [17]
    HOLIAN B L, LOMDAHL P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science, 1998, 280(5372): 2085. doi: 10.1126/science.280.5372.2085
    [18]
    BLEWITT T H, COLTMAN R R, REDMAN J K. Low-temperature deformation of copper single crystals [J]. Journal of Applied Physics, 1957, 28(6): 651–660. doi: 10.1063/1.1722824
    [19]
    ROHATGI A, VECCHIO K S, GRAY G T. The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: deformation twinning, work hardening, and dynamic recovery [J]. Metallurgical and Materials Transactions A, 2001, 32(1): 135–145. doi: 10.1007/s11661-001-0109-7
    [20]
    RAVELO R, GERMANN T C, GUERRERO O, et al. Shock-induced plasticity in tantalum single crystals: interatomic potentials and large-scale molecular-dynamics simulations [J]. Physical Review B, 2013, 88(13): 134101. doi: 10.1103/PhysRevB.88.134101
    [21]
    LUO S N, GERMANN T C, TONKS D L. The effect of vacancies on dynamic response of single crystal Cu to shock waves [J]. Journal of Applied Physics, 2010, 107(5): 056102. doi: 10.1063/1.3326941
    [22]
    QIU T, XIONG Y, XIAO S, et al. Non-equilibrium molecular dynamics simulations of the spallation in Ni: effect of vacancies [J]. Computational Materials Science, 2017, 137: 273–281. doi: 10.1016/j.commatsci.2017.05.039
    [23]
    HAN W Z, AN Q, LUO S N, et al. Deformation and spallation of shocked Cu bicrystals with Σ3 coherent and symmetric incoherent twin boundaries [J]. Physical Review B, 2012, 85(2): 024107.
    [24]
    AN Q, HAN W Z, LUO S N, et al. Left-right loading dependence of shock response of (111)//(112) Cu bicrystals: deformation and spallation [J]. Journal of Applied Physics, 2012, 111(5): 053525.
    [25]
    WANG L, E J C, CAI Y, et al. Shock-induced deformation of nanocrystalline Al: characterization with orientation mapping and selected area electron diffraction [J]. Journal of Applied Physics, 2015, 117(8): 084301. doi: 10.1063/1.4907672
    [26]
    JACOBSEN K W, SCHIØTZ J. Nanoscale plasticity [J]. Nature Materials, 2002, 1: 15. doi: 10.1038/nmat718
    [27]
    马文. 冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D]. 长沙: 国防科技大学, 2011.
    [28]
    唐志平. 冲击相变研究的现状与趋势 [J]. 高压物理学报, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003

    TANG Z P. Some topics in shock-induced phase transitions [J]. Chinese Journal of High Pressure Physics, 1994, 8(1): 14–22. doi: 10.11858/gywlxb.1994.01.003
    [29]
    BANCROFT D, PETERSON E L, MINSHALL S. Polymorphism of iron at high pressure [J]. Journal of Applied Physics, 1956, 27(3): 291–298. doi: 10.1063/1.1722359
    [30]
    BARKER L M, HOLLENBACH R E. Shock wave study of the αε phase transition in iron [J]. Journal of Applied Physics, 1974, 45(11): 4872–4887. doi: 10.1063/1.1663148
    [31]
    KALANTAR D H, BELAK J F, COLLINS G W, et al. Direct observation of the αε transition in shock-compressed iron via nanosecond X-ray diffraction [J]. Physical Review Letters, 2005, 95(7): 075502. doi: 10.1103/PhysRevLett.95.075502
    [32]
    YAAKOBI B, BOEHLY T R, MEYERHOFER D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks [J]. Physical Review Letters, 2005, 95(7): 075501. doi: 10.1103/PhysRevLett.95.075501
    [33]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Microscopic view of structural phase transitions induced by shock waves [J]. Science, 2002, 296(5573): 1681. doi: 10.1126/science.1070375
    [34]
    崔新林. 冲击波压缩下铁的结构相变及微观机理研究[D]. 北京: 中国矿业大学(北京), 2009.
    [35]
    CUI X, ZHU W, HE H, et al. Phase transformation of iron under shock compression: effects of voids and shear stress [J]. Physical Review B, 2008, 78(2): 024115. doi: 10.1103/PhysRevB.78.024115
    [36]
    SHAO J L, DUAN S Q, HE A M, et al. Microscopic dynamics of structural transition in iron with a nanovoid under shock loading [J]. Journal of Physics: Condensed Matter, 2010, 22(35): 355403. doi: 10.1088/0953-8984/22/35/355403
    [37]
    邵建立, 何安民, 段素青, 等. 单轴应变驱动铁bcc–hcp相转变的微观模拟 [J]. 物理学报, 2010, 59(7): 4888–4894.

    SHAO J L, HE A M, DUAN S Q, et al. Atomistic simulation of the bcc–hcp transition in iron driven by uniaxial strain [J]. Acta Physica Sinica, 2010, 59(7): 4888–4894.
    [38]
    邵建立. 金属动态相变与破坏现象的MD模拟[D]. 绵阳: 中国工程物理研究院, 2013.
    [39]
    HAWRELIAK J, COLVIN J D, EGGERT J H, et al. Analysis of the X-ray diffraction signal for the αϵ transition in shock-compressed iron: simulation and experiment [J]. Physical Review B, 2006, 74(18): 184107. doi: 10.1103/PhysRevB.74.184107
    [40]
    GUNKELMANN N, BRINGA E M, KANG K, et al. Polycrystalline iron under compression: plasticity and phase transitions [J]. Physical Review B, 2012, 86(14): 144111. doi: 10.1103/PhysRevB.86.144111
    [41]
    NINA G, DIEGO R T, EDUARDO M B, et al. Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron [J]. New Journal of Physics, 2014, 16(9): 093032. doi: 10.1088/1367-2630/16/9/093032
    [42]
    GUNKELMANN N, BRINGA E M, TRAMONTINA D R, et al. Shock waves in polycrystalline iron: plasticity and phase transitions [J]. Physical Review B, 2014, 89(14): 140102. doi: 10.1103/PhysRevB.89.140102
    [43]
    BOETTGER J C, WALLACE D C. Metastability and dynamics of the shock-induced phase transition in iron [J]. Physical Review B, 1997, 55(5): 2840. doi: 10.1103/PhysRevB.55.2840
    [44]
    SMITH R F, EGGERT J H, SWIFT D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron [J]. Journal of Applied Physics, 2013, 114(22): 223507. doi: 10.1063/1.4839655
    [45]
    KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [46]
    HAWRELIAK J A, EL-DASHER B, LORENZANA H, et al. In situ x-ray diffraction measurements of the c/a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron [J]. Physical Review B, 2011, 83(14): 144114. doi: 10.1103/PhysRevB.83.144114
    [47]
    AMADOU N, DE RESSEGUIER T, DRAGON A, et al. Coupling between plasticity and phase transition in shock-and ramp-compressed single-crystal iron [J]. Physical Review B, 2018, 98(2): 024104. doi: 10.1103/PhysRevB.98.024104
    [48]
    BROWN D W, ALMER J D, BALOGH L, et al. Stability of the two-phase (α/ω) microstructure of shocked zirconium [J]. Acta Materialia, 2014, 67: 383–394. doi: 10.1016/j.actamat.2013.12.002
    [49]
    ZONG H, LOOKMAN T, DING X, et al. Anisotropic shock response of titanium: reorientation and transformation mechanisms [J]. Acta Materialia, 2014, 65: 10–18. doi: 10.1016/j.actamat.2013.11.047
    [50]
    ZONG H, LUO Y, DING X, et al. hcp→ω phase transition mechanisms in shocked zirconium: a machine learning based atomic simulation study [J]. Acta Materialia, 2019, 162: 126–135. doi: 10.1016/j.actamat.2018.09.067
    [51]
    SEAMAN L, CURRAN D R, SHOCKEY D A. Computational models for ductile and brittle fracture [J]. Journal of Applied Physics, 1976, 47(11): 4814–4826. doi: 10.1063/1.322523
    [52]
    SEAMAN L, CURRAN D R, MURRI W J. A continuum model for dynamic tensile microfracture and fragmentation [J]. Journal of Applied Mechanics, 1985, 52(3): 593–600. doi: 10.1115/1.3169106
    [53]
    MOSHE E, ELIEZER S, DEKEL E, et al. An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 107 s−1 [J]. Journal of Applied Physics, 1998, 83(8): 4004–4011. doi: 10.1063/1.367222
    [54]
    WANG Y, QI M, HE H, et al. Spall failure of aluminum materials with different microstructures [J]. Mechanics of Materials, 2014, 69(1): 270–279. doi: 10.1016/j.mechmat.2013.11.005
    [55]
    BELAK J. On the nucleation and growth of voids at high strain-rates [J]. Journal of Computer-Aided Materials Design, 1998, 5(2): 193–206.
    [56]
    SEPPÄLÄ E T, BELAK J, RUDD R E. Effect of stress triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study [J]. Physical Review B, 2004, 69(13): 134101. doi: 10.1103/PhysRevB.69.134101
    [57]
    SEPPÄLÄ E T, BELAK J, RUDD R E. Onset of void coalescence during dynamic fracture of ductile metals [J]. Physical Review Letters, 2004, 93(24): 245503. doi: 10.1103/PhysRevLett.93.245503
    [58]
    邓小良, 祝文军, 贺红亮, 等. 沿晶向冲击加载下铜中纳米孔洞增长的塑性机制研究 [J]. 高压物理学报, 2008, 21(1): 17–19.

    DENG X L, ZHU W J, HE H L, et al. Plasticity mechanism associated with nano-void growth under impact loading along <111> direction in copper [J]. Chinese Journal of High Pressure Physics, 2008, 21(1): 17–19.
    [59]
    ZHU W, SONG Z, DENG X, et al. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Physical Review B, 2007, 75(2): 024104. doi: 10.1103/PhysRevB.75.024104
    [60]
    邓小良, 祝文军, 宋振飞, 等. 冲击加载下孔洞贯通的微观机理研究 [J]. 物理学报, 2016, 58(7): 4772–4778.

    DENG X L, ZHU W J, SONG Z F, et al. Microscopic mechanism of void coalescence under shock loading [J]. Acta Physica Sinica, 2016, 58(7): 4772–4778.
    [61]
    LIAO Y, XIANG M, ZENG X, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. doi: 10.1016/j.commatsci.2014.07.014
    [62]
    AGARWAL G, DONGARE A M. Defect and damage evolution during spallation of single crystal Al: comparison between molecular dynamics and quasi-coarse-grained dynamics simulations [J]. Computational Materials Science, 2018, 145: 68–79. doi: 10.1016/j.commatsci.2017.12.032
    [63]
    XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [64]
    XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005
    [65]
    SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. doi: 10.1140/epjd/e2008-00212-2
    [66]
    陈永涛, 任国武, 汤铁钢, 等. 熔化前后Pb样品表面微喷射现象研究 [J]. 物理学报, 2012, 61(20): 336–343.

    CHEN Y T, REN G W, TANG T G, et al. Ejecta on Pb surface below and above melting pressure [J]. Acta Physica Sinica, 2012, 61(20): 336–343.
    [67]
    CHEN Y, REN G, TANG T, et al. Experimental study of micro-spalling fragmentation from melted lead [J]. Shock Waves, 2016, 26(2): 221–225. doi: 10.1007/s00193-015-0601-4
    [68]
    MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
    [69]
    GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
    [70]
    DEKEL E, ELIEZER S, HENIS Z, et al. Spallation model for the high strain rates range [J]. Journal of Applied Physics, 1998, 84(9): 4851–4858. doi: 10.1063/1.368727
    [71]
    HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. doi: 10.1016/j.actamat.2018.07.073
    [72]
    HAHN E N, GERMANN T C, RAVELO R J, et al. Non-equilibrium molecular dynamics simulations of spall in single crystal tantalum [J]. AIP Conference Proceedings, 2017, 1793(1): 070006.
    [73]
    CHENG M, LI C, TANG M X, et al. Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors [J]. Acta Materialia, 2018, 148: 38–48. doi: 10.1016/j.actamat.2018.01.029
    [74]
    REMINGTON T P, HAHN E N, ZHAO S, et al. Spall strength dependence on grain size and strain rate in tantalum [J]. Acta Materialia, 2018, 158: 313–329. doi: 10.1016/j.actamat.2018.07.048
    [75]
    SRINIVASAN S G, BASKES M I, WAGNER G J. Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel [J]. Journal of Applied Physics, 2007, 101(4): 043504. doi: 10.1063/1.2423084
    [76]
    辛建婷, 祝文军, 刘仓理. 飞秒激光辐照铝材料的分子动力学数值模拟 [J]. 爆炸与冲击, 2004, 24(3): 207–211.

    XIN J T, ZHU W J, LIU C L. Molecular dynamics simulation of radiation effects in Al foil irradiated by femtosecond laser beams [J]. Explosion and Shock Waves, 2004, 24(3): 207–211.
    [77]
    AMOUYE FOUMANI A, NIKNAM A R. Atomistic simulation of femtosecond laser pulse interactions with a copper film: effect of dependency of penetration depth and reflectivity on electron temperature [J]. Journal of Applied Physics, 2018, 123(4): 043106. doi: 10.1063/1.5009501
    [78]
    HATOMI D, OHNISHI N, NISHIKINO M. Molecular dynamics simulation of cluster formation in femtosecond laser ablation [C]//X-Ray Lasers and Coherent X-Ray Sources: Development and Applications X. International Society for Optics and Photonics, 2013, 8849: 884918.
    [79]
    WU C, ZHIGILEI L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations [J]. Applied Physics A, 2013, 114(1): 11–32.
    [80]
    WU C, CHRISTENSEN M S, SAVOLAINEN J M, et al. Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target [J]. Physical Review B, 2015, 91(3): 035413. doi: 10.1103/PhysRevB.91.035413
    [81]
    WU C, ZHIGILEI L V. Nanocrystalline and polyicosahedral structure of a nanospike generated on metal surface irradiated by a single femtosecond laser pulse [J]. The Journal of Physical Chemistry C, 2016, 120(8): 4438–4447. doi: 10.1021/acs.jpcc.6b00013
    [82]
    ABOU-SALEH A, KARIM E T, MAURICE C, et al. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr [J]. Applied Physics A, 2018, 124(4): 308. doi: 10.1007/s00339-018-1716-0
    [83]
    CUQ-LELANDAIS J P, BOUSTIE M, SOULARD L, et al. Comparison between experiments and molecular dynamic simulations of spallation induced by ultra-short laser shock on micrometric tantalum targets [J]. AIP Conference Proceedings, 2009, 1195(1): 829–832.
    [84]
    LEVEUGLE E, IVANOV D S, ZHIGILEI L V. Photomechanical spallation of molecular and metal targets: molecular dynamics study [J]. Applied Physics A, 2004, 79(7): 1643–1655. doi: 10.1007/s00339-004-2682-2
    [85]
    ZHIGILEI L V. Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation [J]. Applied Physics A, 2003, 76(3): 339–350. doi: 10.1007/s00339-002-1818-5
    [86]
    SIGNOR L, DE RESSÉGUIER T, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [J]. AIP Conference Proceedings, 2007, 955(1): 593–596.
    [87]
    KARIM E T, LIN Z, ZHIGILEI L V. Molecular dynamics study of femtosecond laser interactions with Cr targets [J]. AIP Conference Proceedings, 2012, 1464(1): 280–293.
    [88]
    LORAZO P, LEWIS L J, MEUNIER M. Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation [J]. Physical Review B, 2006, 73(13): 134108. doi: 10.1103/PhysRevB.73.134108
    [89]
    JARAMILLO-BOTERO A, SU J, QI A, et al. Large-scale, long-term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments [J]. Journal of Computational Chemistry, 2011, 32(3): 497–512. doi: 10.1002/jcc.21637
    [90]
    KADAU K, GERMANN T C, LOMDAHL P S. Molecular dynamics comes of age: 320 billion atom simulation on BlueGene/L [J]. International Journal of Modern Physics C, 2006, 17(12): 1755–1761. doi: 10.1142/S0129183106010182
    [91]
    GERMANN T C, KADAU K. Trillion-atom molecular dynamics becomes a reality [J]. International Journal of Modern Physics C, 2008, 19(9): 1315–1319. doi: 10.1142/S0129183108012911
    [92]
    TONG Q, LI S. Multiscale coupling of molecular dynamics and peridynamics [J]. Journal of the Mechanics and Physics of Solids, 2016, 95: 169–187. doi: 10.1016/j.jmps.2016.05.032
    [93]
    LEE Y, BASARAN C. A multiscale modeling technique for bridging molecular dynamics with finite element method [J]. Journal of Computational Physics, 2013, 253: 64–85. doi: 10.1016/j.jcp.2013.06.039
    [94]
    BOSTEDT C, BOUTET S, FRITZ D M, et al. Linac coherent light source: the first five years [J]. Reviews of Modern Physics, 2016, 88(1): 015007. doi: 10.1103/RevModPhys.88.015007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(15052) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return