杆式钨合金弹超高速撞击薄靶的能量损耗

孙欢腾 李名锐 周刚 马坤 舒孝鸿

孙欢腾, 李名锐, 周刚, 马坤, 舒孝鸿. 杆式钨合金弹超高速撞击薄靶的能量损耗[J]. 高压物理学报, 2019, 33(6): 064106. doi: 10.11858/gywlxb.20190732
引用本文: 孙欢腾, 李名锐, 周刚, 马坤, 舒孝鸿. 杆式钨合金弹超高速撞击薄靶的能量损耗[J]. 高压物理学报, 2019, 33(6): 064106. doi: 10.11858/gywlxb.20190732
SUN Huanteng, LI Mingrui, ZHOU Gang, MA Kun, SHU Xiaohong. Energy Dissipation of Tungsten Alloys Cylindrical Rods Hypervelocity Impacting Thin Steel Target[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064106. doi: 10.11858/gywlxb.20190732
Citation: SUN Huanteng, LI Mingrui, ZHOU Gang, MA Kun, SHU Xiaohong. Energy Dissipation of Tungsten Alloys Cylindrical Rods Hypervelocity Impacting Thin Steel Target[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064106. doi: 10.11858/gywlxb.20190732

杆式钨合金弹超高速撞击薄靶的能量损耗

doi: 10.11858/gywlxb.20190732
基金项目: 国家自然科学基金(11772269, 11402213)
详细信息
    作者简介:

    孙欢腾(1994-),男,博士研究生,主要从事超高速撞击能量研究. E-mail:780519755@qq.com

    通讯作者:

    周 刚(1964-),男,研究员,主要从事爆炸与冲击动力学研究. E-mail:gzhou@nint.ac.cn

  • 中图分类号: O385

Energy Dissipation of Tungsten Alloys Cylindrical Rods Hypervelocity Impacting Thin Steel Target

  • 摘要: 超高速撞击过程伴随着复杂的物理过程。为分析杆式圆柱形钨合金弹超高速撞击薄钢靶时的物理过程,采用AUTODYN/SPH数值仿真计算方法获得了撞击过程模型及每个光滑粒子流体动力学信息,并通过广度搜索破片识别程序识别每个破片所含粒子,利用MATLAB编程对破片粒子数据信息进行统计分析,获得弹靶撞击过程的变化特性、弹靶破片数量、相关能量随撞击时间的变化规律。通过分析发现:随着弹体撞击速度的增加,剩余弹体被严重侵蚀,且弹体能量损耗增加,弹体损失的能量主要转变为弹靶破片动能;计算得到了撞击20 ${\text{μ}}{\rm{s}}$时的能量损耗直方图,同时分析了发生撞击时靶板的能量变化过程,并简要描述了该过程。

     

  • 图  弹体撞击靶板示意图

    Figure  1.  Diagrammatic sketch of projectile impact target plate

    图  仿真结果与实验结果对比

    Figure  2.  Comparison between simulation and experimental results

    图  不同时刻弹体的侵蚀

    Figure  3.  Erosion of projectile at different time

    图  不同长度弹体以不同速度撞击时产生的弹体破片数量

    Figure  4.  Fragments’ number of projectile with different velocities and lengths

    图  不同长度弹体的撞击结果

    Figure  5.  Impact results of projectiles with different lengths

    图  不同长度的弹体撞击形成的破片云长度和宽度

    Figure  6.  Debris length and width of projectiles with different lengths

    图  能量耗散图

    Figure  7.  Image of energy dissipation

    图  耗散的能量损失与剩余弹体速度降低量

    Figure  8.  The dissipation of energy and the decline of projectile velocity

    图  耗散的总塑性功与内能

    Figure  9.  The dissipation of total plastic energy and internal energy

    图  10  靶板获能过程

    Figure  10.  The gain energy of target plate

    图  11  剩余弹体动能

    Figure  11.  Kinetic energy of residual projectile

    表  1  状态方程参数

    Table  1.   Parameters of equation of state

    MaterialSC0/(m·s–1)${\varGamma}$${{\rho _0}/\left( {{\rm kg}\cdot {{\rm m}^{-3}}} \right)}$
    Tungsten alloy1.234 0401.6717.6
    Q345 Steel1.494 5692.177.83
    下载: 导出CSV

    表  2  钨合金的Steinberg-Guinan强度模型参数

    Table  2.   Steinberg-Guinan strength model parameters of tungsten alloy

    ${{G_0}/{\rm GPa}}$${{Y_0}/{\rm GPa}}$${ {T_{\rm m}}/{\rm{K} } }$${ {G'_p} }$${ {G_T'}/({ {\rm{MPa} }\cdot{\rm K}^{ - 1} } })$${\,\beta }$${n}$${ {Y'_p} }$
    1321.44 5201.794–401.30.10.019 027
    下载: 导出CSV

    表  3  Q345钢的Johnson-Cook强度模型参数

    Table  3.   Johnson-Cook strength model parameters of Q345 steel

    ${A/{\rm GPa}}$${B/{\rm GPa}}$${n}$${C}$${m}$${{T_{{\rm{melt}}}}/{\rm K}}$T0/KG/GPa
    0.3740.795 70.454 50.015 860.885 61 75930080.47
    下载: 导出CSV

    表  4  实验与数值仿真结果

    Table  4.   Results of simulation and experiment

    MethodResidual projectile’s
    kinetic energy/(km·s–1)
    Residual projectile’s
    length/mm
    Experiment2.94512.510
    Simulation2.95211.823
    下载: 导出CSV
  • [1] 武强, 张庆明, 孙浩勇, 等. 超高速撞击下PTFE/Al含能材料薄板的载荷特性分析 [J]. 航天器环境工程, 2017, 34(1): 1–7. doi: 10.3969/j.issn.1673-1379.2017.01.001

    WU Q, ZHANG Q M, SUN H Y, et al. The loading characteristics of PTFE/Al energetic materialsunder hypervelocity impact [J]. Spacecraft Environment Engineering, 2017, 34(1): 1–7. doi: 10.3969/j.issn.1673-1379.2017.01.001
    [2] 迟润强, 庞宝君, 何茂坚. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002

    CHI R Q, PANG B J, HE M J. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hypervelocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002
    [3] 曲广吉, 韩增尧. 空间碎片超高速撞击动力学建模与数值仿真技术 [J]. 中国空间科学技术, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005

    QU G J, HAN Z Y. Dynamical modeling and numerical simulation of hypervelocity space debris impact [J]. Chinese Space Science and Technology, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005
    [4] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟 [J]. 高压物理学报, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009

    ZHANG W, PANG B J, JIA B, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009
    [5] 童宗保, 王金相, 彭楚才. 2~3km/s初速下球形破片对金属薄靶的侵彻效应分析 [J]. 科学技术与工程, 2014, 14(33): 215–219. doi: 10.3969/j.issn.1671-1815.2014.33.040

    TONG Z B, WANG J X, PENG C C. Analysis of the effect of the circle fragment penetration the tine metal target with the initial velocity between 2km/s and 3km/s [J]. Science Technology and Engineering, 2014, 14(33): 215–219. doi: 10.3969/j.issn.1671-1815.2014.33.040
    [6] FA W K, JIE H. Test study on the performance of shielding configuration with stuffed layer under hypervelocity impact [J]. Acta Astronautica, 2016(127): 553–560.
    [7] SHI C L, YI L. Research on the technique of identifying debris and obtaining characteristic parameters of large-scale 3D point set [J]. International Journal of Impact Engineering, 2013(56): 27–31.
    [8] 唐恩凌, 徐名扬, 张庆明. 超高速撞击厚靶过程的能量分配研究 [J]. 固体力学学报, 2016, 37(2): 152–160.

    TANG E L, XU M Y, ZHANG Q M. Study on partitioning of energy in hypervelocity impact on thick target [J]. Chinese Journal o f Solid Mechanics, 2016, 37(2): 152–160.
    [9] Thomson W T. An approximate theory of armor penetration [J]. Journal of Applied Physics, 1955, 26: 80–82. doi: 10.1016/0734-743X(95)00023-4
    [10] WOODWARD R L. The penetration of metal targets by conical projectiles [J]. International Journal of Mechanical Sciences, 1978, 20: 349–359. doi: 10.1016/0020-7403(78)90038-3
    [11] WIERZBICKI T. Petalling of plates under explosive and impact loading [J]. International Journal of Impact Engineering, 1999, 22: 935–954. doi: 10.1016/S0734-743X(99)00028-7
    [12] WANG B, XIONG J. Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact [J]. Materials and Design, 2013(50): 140–148.
    [13] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 53–60.

    WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 53–60.
    [14] 汪庆桃, 吴克刚, 李必红, 等. 球形弹丸超高速碰撞破碎特性 [J]. 振动与冲击, 2014, 33(22): 46–50.

    WANG Q T, WU K G, LI B H, et al. Fragmentation properties of spherical projectiles impacting at hypervelocity [J]. Journal of Vibration and Shock, 2014, 33(22): 46–50.
    [15] 陈鸿, 周智炫, 黄洁. 带迎角钨杆斜侵彻铝板数值仿真研究 [J]. 实验流体力学, 2014, 28(2): 85–89. doi: 10.11729/syltlx2014pz29

    CHEN H, ZHOU Z X, HUANG J. Numerical simulation study on tungsten rod oblique penetrating aluminum plate with attack angle [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 85–89. doi: 10.11729/syltlx2014pz29
    [16] 王芳, 李磊, 金俊. 空间碎片超高速碰撞的数值方法研究 [J]. 中国安全科学学报, 2006, 16(5): 26–30. doi: 10.3969/j.issn.1003-3033.2006.05.005

    WANG F, LI L, JIN J. Study on numerical simulation of hypervelocity impact of debris in outer space [J]. China Safety Science Journal, 2006, 16(5): 26–30. doi: 10.3969/j.issn.1003-3033.2006.05.005
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  7024
  • HTML全文浏览量:  3220
  • PDF下载量:  37
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-03-24

目录

    /

    返回文章
    返回