高压下正交相CsPbI3钙钛矿纳米棒的带隙调制

姜红梅 曹晔 杨松睿 马志伟 付瑞净 石越 肖冠军

姜红梅, 曹晔, 杨松睿, 马志伟, 付瑞净, 石越, 肖冠军. 高压下正交相CsPbI3钙钛矿纳米棒的带隙调制[J]. 高压物理学报, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711
引用本文: 姜红梅, 曹晔, 杨松睿, 马志伟, 付瑞净, 石越, 肖冠军. 高压下正交相CsPbI3钙钛矿纳米棒的带隙调制[J]. 高压物理学报, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711
JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711
Citation: JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711

高压下正交相CsPbI3钙钛矿纳米棒的带隙调制

doi: 10.11858/gywlxb.20190711
基金项目: 国家自然科学基金(11774125);国防科技重点实验室基金(6142A0306010917);吉林省教育厅“十三五”科学研究规划(JJKH20180118KJ)
详细信息
    作者简介:

    姜红梅(1996-),女,硕士研究生,主要从事钙钛矿纳米材料的高压研究. E-mail: jianghm18@mails.jlu.edu.cn

    曹 晔(1994-),女,硕士研究生,主要从事钙钛矿纳米材料的高压研究. E-mail: caoye16@mails.jlu.edu.cn

    通讯作者:

    肖冠军(1986-),男,博士,副教授,博士生导师,主要从事高压低维材料物理研究. E-mail: xguanjun@jlu.edu.cn

  • 中图分类号: O521.2

Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure

  • 摘要: 全无机卤化物钙钛矿由于其稳定性强,且具有良好的光学性质,是一种很有前途的光电材料。然而,有效地设计其带隙以满足实际应用需求仍是亟待解决的关键问题。通过控制合成的反应时间和温度,对铯铅碘(CsPbI3)纳米材料进行形貌调控,合成出形貌均一、结晶性良好的棒状CsPbI3纳米材料。进一步利用金刚石对顶砧,结合原位高压紫外-可见吸收光谱,对CsPbI3纳米棒在高压下的带隙变化进行研究,发现高压下CsPbI3纳米棒的带隙减小,带隙的可调控性为纳米材料在光伏电池领域的应用奠定基础。研究结果不仅有助于在原子尺度上建立CsPbI3纳米棒的结构特性关系,而且为全无机钙钛矿纳米材料的实际应用提供重要线索。

     

  • 图  CsPbI3纳米棒的TEM图像(a)、HRTEM图像(b)和映射图像(c)

    Figure  1.  TEM image (a), HRTEM image (b) and mapping images (c) of CsPbI3 nanorods

    图  CsPbI3纳米棒的SEM图像

    Figure  2.  SEM images of CsPbI3 nanorods

    图  CsPbI3纳米棒的XRD图像

    Figure  3.  XRD image of CsPbI3 nanorods

    图  压力下CsPbI3纳米棒吸收光谱的变化

    Figure  4.  Changes of absorption spectra of CsPbI3 nanorods under pressure

    图  卸压后的CsPbI3纳米棒的HRTEM图像(a)和STEM图像(b)

    Figure  5.  HRTEM image (a) and STEM image (b) of CsPbI3 nanorods after decompression

    图  CsPbI3纳米棒带隙与压力的关系

    Figure  6.  Relationship between bandgap and pressure of CsPbI3 nanorods

  • [1] WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics [J]. Advanced Materials, 2015, 27(44): 7101–7108. doi: 10.1002/adma.201503573
    [2] CAO Y, QI G, LIU C, et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9332–9338. doi: 10.1021/acs.jpcc.8b01673
    [3] DOU L, YANG Y M, YOU J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity [J]. Nature Communications, 2014, 5: 5404. doi: 10.1038/ncomms6404
    [4] ZHANG D, EATON S W, YU Y, et al. Solution-phase synthesis of cesium lead halide perovskite nanowires [J]. Journal of the American Chemical Society, 2015, 137(29): 9230–9233. doi: 10.1021/jacs.5b05404
    [5] SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J]. Science, 2016, 354(6308): 92–95. doi: 10.1126/science.aag2700
    [6] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite [J]. Nature Nanotechnology, 2014, 9(9): 687. doi: 10.1038/nnano.2014.149
    [7] NAGAOKA Y, HILLS-KIMBALL K, TAN R, et al. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels [J]. Advanced Materials, 2017, 29(18): 1606666. doi: 10.1002/adma.201606666
    [8] WANG Z, WEN X D, HOFFMANN R, et al. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands [J]. Proceedings of the National Academy of Sciences, 2010, 107(40): 17119–17124. doi: 10.1073/pnas.1011224107
    [9] WU H, BAI F, SUN Z, et al. Pressure-driven assembly of spherical nanoparticles and formation of 1D-nanostructure arrays [J]. Angewandte Chemie International Edition, 2010, 49(45): 8431–8434. doi: 10.1002/anie.201001581
    [10] LI B, BIAN K, ZHOU X, et al. Pressure compression of CdSe nanoparticles into luminescent nanowires [J]. Science Advances, 2017, 3(5): e1602916. doi: 10.1126/sciadv.1602916
    [11] XIAO G, CAO Y, QI G, et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals [J]. Journal of the American Chemical Society, 2017, 139(29): 10087–10094. doi: 10.1021/jacs.7b05260
    [12] ZHANG L, ZENG Q, WANG K. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3 [J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3752–3758. doi: 10.1021/acs.jpclett.7b01577
    [13] YIN T, FANG Y, CHONG W K, et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates [J]. Advanced Materials, 2018, 30(2): 1705017. doi: 10.1002/adma.v30.2
    [14] WANG Y, LÜ X, YANG W, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite [J]. Journal of the American Chemical Society, 2015, 137(34): 11144–11149. doi: 10.1021/jacs.5b06346
    [15] JIANG S, FANG Y, LI R, et al. Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite [J]. Angewandte Chemie International Edition, 2016, 55(22): 6540–6544. doi: 10.1002/anie.201601788
    [16] LIU G, KONG L, GONG J, et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability [J]. Advanced Functional Materials, 2017, 27(3): 1604208. doi: 10.1002/adfm.v27.3
  • 加载中
图(6)
计量
  • 文章访问数:  9199
  • HTML全文浏览量:  4722
  • PDF下载量:  76
出版历程
  • 收稿日期:  2019-01-16
  • 修回日期:  2019-03-01
  • 发布日期:  2019-06-25

目录

    /

    返回文章
    返回