稀土硼化物LaB6晶体材料的弹性性质和力学性能

张飞鹏 施加利 张静文 包黎红 秦国强 张光磊 杨新宇 张久兴

张飞鹏, 施加利, 张静文, 包黎红, 秦国强, 张光磊, 杨新宇, 张久兴. 稀土硼化物LaB6晶体材料的弹性性质和力学性能[J]. 高压物理学报, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668
引用本文: 张飞鹏, 施加利, 张静文, 包黎红, 秦国强, 张光磊, 杨新宇, 张久兴. 稀土硼化物LaB6晶体材料的弹性性质和力学性能[J]. 高压物理学报, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668
ZHANG Feipeng, SHI Jiali, ZHANG Jingwen, BAO Lihong, QIN Guoqiang, ZHANG Guanglei, YANG Xinyu, ZHANG Jiuxing. Elastic and Mechanical Properties of Rare Earth Boride LaB6 Crystalline Material[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668
Citation: ZHANG Feipeng, SHI Jiali, ZHANG Jingwen, BAO Lihong, QIN Guoqiang, ZHANG Guanglei, YANG Xinyu, ZHANG Jiuxing. Elastic and Mechanical Properties of Rare Earth Boride LaB6 Crystalline Material[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 022201. doi: 10.11858/gywlxb.20180668

稀土硼化物LaB6晶体材料的弹性性质和力学性能

doi: 10.11858/gywlxb.20180668
基金项目: 国家自然科学基金(51572066, 51302129, 51662034);河南省科技计划项目(132300410071);河南省自然科学基金(162300410007)
详细信息
    作者简介:

    张飞鹏(1980-),男,博士,副教授,主要从事功能材料研究. E-mail: zhfp163@163.com

  • 中图分类号: O521.2; TN34

Elastic and Mechanical Properties of Rare Earth Boride LaB6 Crystalline Material

  • 摘要: 利用密度泛函理论和Birch-Murnaghan物态方程,系统分析了LaB6晶体材料的弹性常数参数、体弹性模量、剪切弹性模量及其他力学性能。结果表明:LaB6晶体具有较大的弹性常数参数C11,说明在此主轴应力方向上具有较大的弹性常数;同时它还具有较大的体弹性模量,并且体弹性模量具有各向同性,剪切弹性模量具有各向异性;LaB6晶体的杨氏模量为227.85 GPa,泊松比为0.26,体剪弹性模量比值达到1.44,表明其脆性较强,不易发生弹性形变;LaB6晶体的硬度达到11.56 GPa,平均弹性波速达4.87 km/s。LaB6的带隙宽度为0.20 eV,呈金属性,内部电子具有较强的局域性,La和B之间具有较强的共价键成分。

     

  • 图  LaB6的立方结构示意图

    Figure  1.  Schematic cubic structure of LaB6

    图  LaB6晶体材料的能带结构和分态密度

    Figure  2.  Band structure and partial density of states for the LaB6 crystalline material

    表  1  LaB6晶体材料的晶格参数

    Table  1.   Structural parameters of LaB6 crystalline material

    Methoda/nmb/nmc/nmα/(°)β/(°)γ/(°)
    Experiment0.415 49 0.415 49 0.415 49 909090
    Calculation0.420 2050.420 2050.420 205909090
    下载: 导出CSV

    表  2  LaB6晶体材料的体弹性模量和剪切弹性模量

    Table  2.   Bulk modulus and shear modulus of LaB6 crystalline material

    BV/GPaBR/GPaBH/GPaGV/GPaGR/GPaGH/GPa
    160.55160.55160.55111.4968.8590.17
    下载: 导出CSV

    表  3  LaB6晶体材料的力学性能参数和弹性波速

    Table  3.   Mechanical parameters and elastic velocities of LaB6 crystalline material

    E/GPaγλABAGH/GPavl/(km·s–1)vt/(km·s–1)vm/(km·s–1)
    227.850.261.4400.2411.567.724.384.87
    下载: 导出CSV

    表  4  LaB6晶体材料的电荷转移

    Table  4.   Charge distributions of LaB6 crystalline material

    AtomCharge distribution/e
    s orbitalp orbitald orbitalTotal charge
    B0.882.540.00–0.42
    La1.505.461.51 2.53
    下载: 导出CSV
  • [1] LAFFERTY J M. Boride cathodes [J]. Journal of Applied Physics, 1951, 22(3): 299–309. doi: 10.1063/1.1699946
    [2] HOSSAIN F M, RILEY D P, MURCH G E. Ab initio calculations of the electronic structure and bonding characteristics of LaB6 [J]. Physical Review B, 2005, 72(23): 235101. doi: 10.1103/PhysRevB.72.235101
    [3] CHEN C H, AIZAWA T, IYI N, et al. Structural refinement and thermal expansion of hexaborides [J]. Journal of Alloys and Compounds, 2004, 366(1/2): L6–L8.
    [4] 张宁, 张玖兴, 包黎红. 悬浮区域熔炼法制备REB6(LaB6、CeB6)单晶体及其表征 [J]. 功能材料, 2012, 43(2): 178–180 doi: 10.3969/j.issn.1007-4252.2012.02.016

    ZHANG N, ZHANG J X, BAO L H, et al. Floating zone growth and characterization of single crystal REB3 (LaB6, CeB6) cathode [J]. Chinese Journal of Functional Materials, 2012, 43(2): 178–180 doi: 10.3969/j.issn.1007-4252.2012.02.016
    [5] 包黎红, 那仁格日乐, 特古斯, 等. 放电等离子烧结原位合成La xCe1- xB6化合物及性能研究 [J]. 物理学报, 2013, 62: 196105 doi: 10.7498/aps.62.196105

    BAO L H, NARENGERILE, TEGUS O, et al. Synthesis and properties of LaxCe1–xB6 compounds by in-situ spark plasma sintering [J]. Acta Physica Sinica, 2013, 62: 196105 doi: 10.7498/aps.62.196105
    [6] 刘洪亮, 张忻, 王杨, 等. 单晶LaB6阴极材料典型晶面的电子结构和发射性能研究 [J]. 物理学报, 2018, 67: 048101 doi: 10.7498/aps.67.20172187

    LIU H L, ZHANG X, WANG Y, et al. Surface electronic structures and emission property of single crystal LaB6 typical surfaces [J]. Acta Physica Sinica, 2018, 67: 048101 doi: 10.7498/aps.67.20172187
    [7] 高瑞兰, 于化顺, 于普涟, 等. LaB6多晶材料的制备工艺研究 [J]. 山东大学学报(工学版), 2002, 32(6): 593–596 doi: 10.3969/j.issn.1672-3961.2002.06.024

    GAO R L, YU H S, YU P L, et al. Preparation of LaB6 polycrystalline materials [J]. Journal of Shandong University (Engineering Science), 2002, 32(6): 593–596 doi: 10.3969/j.issn.1672-3961.2002.06.024
    [8] NYE J F. Physical properties of crystals: their representation by tensors and matrices [M]. Oxford: Oxford University Press, 1957.
    [9] HILL R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349. doi: 10.1088/0370-1298/65/5/307
    [10] TIAN Y, XU B, ZHAO Z. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021
    [11] BORN M, HUANG K. Dynamical theory of crystal lattices [M]. Oxford: Clarendon Press, 1968.
    [12] HAINES J, LEGER J M, BOCQUILLON G. Synthesis and design of superhard materials [J]. Annual Review of Materials Research, 2001, 31(1): 1–23. doi: 10.1146/annurev.matsci.31.1.1
    [13] PANDA K B, CHANDRAN K S R. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory [J]. Computational Materials Science, 2006, 35(2): 134–150. doi: 10.1016/j.commatsci.2005.03.012
    [14] ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants [J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909–917. doi: 10.1016/0022-3697(63)90067-2
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  9466
  • HTML全文浏览量:  4351
  • PDF下载量:  35
出版历程
  • 收稿日期:  2018-10-19
  • 修回日期:  2018-11-14

目录

    /

    返回文章
    返回