碳纳米管薄膜层间改性复合材料在不同应变率下的力学性能

李周仪 胡振彪 汪浩康 索涛

李周仪, 胡振彪, 汪浩康, 索涛. 碳纳米管薄膜层间改性复合材料在不同应变率下的力学性能[J]. 高压物理学报, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658
引用本文: 李周仪, 胡振彪, 汪浩康, 索涛. 碳纳米管薄膜层间改性复合材料在不同应变率下的力学性能[J]. 高压物理学报, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658
LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658
Citation: LI Zhouyi, HU Zhenbiao, WANG Haokang, SUO Tao. Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024205. doi: 10.11858/gywlxb.20180658

碳纳米管薄膜层间改性复合材料在不同应变率下的力学性能

doi: 10.11858/gywlxb.20180658
基金项目: 国家自然科学基金(11772268,11522220,11272267,11527803)
详细信息
    作者简介:

    李周仪(1993-),女,博士研究生,主要从事冲击动力学研究. E-mail: lizhouyi1993@163.com

    通讯作者:

    索 涛(1979-),男,博士,教授,主要从事冲击动力学研究. E-mail: suotao@nwpu.edu.cn

  • 中图分类号: O347.3

Mechanical Properties of CFRP Composites with CNT Film Interlayer under Different Strain Rates

  • 摘要: 将浮动催化化学气相沉积法制备的碳纳米管膜作为碳纤维层间改性材料,采用热压成型工艺制备了碳纳米管膜/碳纤维/环氧树脂混杂复合材料,并对其进行准静态II型断裂韧性实验以及准静态和动态压缩实验。碳纳米管膜层间改性后,复合材料的II型断裂韧性比未改性材料提高约60%,扫描电镜图像显示增韧机理主要是碳纳米管对基体的桥联。压缩实验结果表明,准静态压缩下碳纳米管膜改性材料在面内和面外两个方向的压缩强度都得到一定提高,动态面外压缩时改性后材料的压缩强度提高约9%,但是动态面内压缩时压缩强度没有提高,断口形貌显示这主要是碳纳米管膜内的分层所致。

     

  • 图  热压工艺图

    Figure  1.  Schematic diagram of hot pressing

    图  ENF试样及加载方式

    Figure  2.  ENF specimen and the proposed loading method

    图  层合板铺层和试样在压缩实验中的受载方向

    Figure  3.  Illustration of interlayered ply sequences and the specimen with two loading directions during the compression tests

    图  SHPB装置示意图

    Figure  4.  Schematic diagram of SHPB

    图  典型应力-应变曲线和应变率时程曲线

    Figure  5.  Typical stress-strain curve and strain rate history

    图  CNTF/CF/EP与CF/EP II型断裂试验的载荷-位移曲线

    Figure  6.  Load-displacement curve for GIIC tests of CNTF/CF/EP and CF/EP

    图  CF/EP和CNTF/CF/EP试样的断口形貌

    Figure  7.  Fracture graphs of CF/EP and CNTF/CF/EP specimens

    图  准静态加载下CF/EP和CNTF/CF/EP的应力-应变曲线

    Figure  8.  Stress-strain curves of CF/EP and CNTF/CF/EP under static loading

    图  2500 s–1面外压缩下CF/EP和CNTF/CF/EP的 应力-应变曲线

    Figure  9.  Stress-strain curves of CF/EP and CNTF/CF/EP under 2500 s–1 out-of-plane compression

    图  10  面外压缩下CF/EP和CNTF/CF/EP的破坏过程

    Figure  10.  Damage of CF/EP and CNTF/CF/EP under out-of-plane compression

    图  11  600 s–1面内压缩下CF/EP和CNTF/CF/EP的 应力-应变曲线

    Figure  11.  Stress-strain curves of CF/EP and CNTF/CF/EP under 600 s–1 in-plane compression

    图  12  面内压缩下CF/EP和CNTF/CF/EP的破坏过程

    Figure  12.  Damage of CF/EP and CNTF/CF/EP under in-plane compression

    图  13  CNTF改性试样破坏后断口的微观图像

    Figure  13.  Microscope photo of fracture surface of CNTF interlayered specimen after damage

    图  14  不同应变率下面内和面外压缩时CNTF/CF/EP的应力-应变曲线

    Figure  14.  Stress-strain curves of CNTF/CF/EP under in-plane and out-of-plane compressions at different strain rates

    表  1  整形片尺寸

    Table  1.   Sizes of pulse shaping slices

    $\dot \varepsilon $/s–1Size of pulse shaping slice/(mm×mm×mm)
    CF/EP (In-plane)CNTF/CF/EP (In-plane)CF/EP (Out-of-plane)CNTF/CF/EP (Out-of-plane)
    6006×7×0.86×7×0.8
    120010×10×0.810×10×0.87×7×1.07×7×1.0
    25005×6×0.85×6×0.8
    下载: 导出CSV

    表  2  CF/EP与CNTF/CF/EP在不同应变率下的压缩强度与消耗能量

    Table  2.   Compression strength and dissipated energy of CF/EP and CNTF/CF/EP

    SpecimenLoading methodStrain rate/s–1Compression strength/MPaDissipated energy/(N·mm–2
    CF/EPOut-of-plane10–3670.8±528.024
    CF/EPOut-of-plane1000843.3±2037.943
    CF/EPOut-of-plane2500799.5±1035.724
    CNTF/CF/EPOut-of-plane10–3687.3±429.847
    CNTF/CF/EPOut-of-plane1000881.1±943.347
    CNTF/CF/EPOut-of-plane2500847.1±1540.853
    CF/EPIn-plane10–3321.0±52.370
    CF/EPIn-plane600621.4±58.681
    CF/EPIn-plane1000676.3±129.140
    CNTF/CF/EPIn-plane10–3405.8±62.790
    CNTF/CF/EPIn-plane600699.3±108.743
    CNTF/CF/EPIn-plane1000646.0±169.544
    下载: 导出CSV
  • [1] HAO J W. Technology situation and development trends of advanced resin matrix composites [J]. Aeronautical Manufacturing Technology, 2001, 3(216): 22–25.
    [2] PHAM S, BURCHILL P J. Toughening of vinyl ester resins with modified polybutadienes [J]. Polymer, 1995, 36(17): 3279–3285. doi: 10.1016/0032-3861(95)99426-U
    [3] CARLSSON L A, AKSOY A. Analysis of interleaved end-notched flexure specimen for measuring mode II fracture toughness [J]. International Journal of Fracture, 1991, 52(1): 67–77. doi: 10.1007/BF00020258
    [4] 董慧民, 益小苏, 安学锋, 等. 纤维增强热固性聚合物基复合材料层间增韧研究进展 [J]. 复合材料学报, 2014, 31(2): 273–285

    DONG H M, YI X S, AN X F, et al. Development of interleaved fibre-reinforced thermoset polymer matrix composites [J]. Acta Materiae Compositae Sinica, 2014, 31(2): 273–285
    [5] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56–58. doi: 10.1038/354056a0
    [6] CHOU T W, GAO L, THOSTENSON E T, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites [J]. Composites Science and Technology, 2010, 70(1): 1–19. doi: 10.1016/j.compscitech.2009.10.004
    [7] ASHRAFI B, GUAN J W, MIRJALILI V, et al. Comparison of chemical vapor deposition and chemical grafting for improving the mechanical properties of carbon fiber/epoxy composites with multi-wall carbon nanotubes [J]. Composites Science and Technology, 2011, 71: 1569–1578.
    [8] ZENG Y, CI L, CAREY B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798–6804. doi: 10.1021/nn101650p
    [9] ZHANG Z C, GU Y Z, WANG S K, et al. Enhanced dielectric and mechanical properties in chlorine-doped continuous CNT sheet reinforced sandwich polyvinylidene fluoride film [J]. Carbon, 2016, 107: 405–414. doi: 10.1016/j.carbon.2016.05.068
    [10] Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M-14 [S]. 2001.
    [11] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 30–31.
    [12] DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils [J]. Composites Science and Technology, 2015, 117: 244–256. doi: 10.1016/j.compscitech.2015.06.021
    [13] HAQUE A, ALI M. High strain rate responses and failure analysis in polymer matrix composites–an experimental and finite element study [J]. Journal of Composite Materials, 2005, 39(5): 423–450. doi: 10.1177/0021998305047094
    [14] LI T, LI M, GU Y, et al. Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite [J]. Composites Science and Technology, 2018, 166: 176–182. doi: 10.1016/j.compscitech.2018.02.007
    [15] CHEN X, LI Y, ZHI Z, et al. The compressive and tensile behavior of a 0/90 C fiber woven composite at high strain rates [J]. Carbon, 2013, 61: 97–104. doi: 10.1016/j.carbon.2013.04.073
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  8467
  • HTML全文浏览量:  4510
  • PDF下载量:  34
出版历程
  • 收稿日期:  2018-10-15
  • 修回日期:  2018-11-29

目录

    /

    返回文章
    返回