线性装药爆破去除输电线覆冰研究

宋巍 谢东升 黄铁铮 孙滔 李海涛 范志强

宋巍, 谢东升, 黄铁铮, 孙滔, 李海涛, 范志强. 线性装药爆破去除输电线覆冰研究[J]. 高压物理学报, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605
引用本文: 宋巍, 谢东升, 黄铁铮, 孙滔, 李海涛, 范志强. 线性装药爆破去除输电线覆冰研究[J]. 高压物理学报, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605
SONG Wei, XIE Dongsheng, HUANG Tiezheng, SUN Tao, LI Haitao, FAN Zhiqiang. De-Icing Power Line by Linear Shaped Explosive Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605
Citation: SONG Wei, XIE Dongsheng, HUANG Tiezheng, SUN Tao, LI Haitao, FAN Zhiqiang. De-Icing Power Line by Linear Shaped Explosive Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045901. doi: 10.11858/gywlxb.20180605

线性装药爆破去除输电线覆冰研究

doi: 10.11858/gywlxb.20180605
基金项目: 国家电网公司科技项目(520533160002)
详细信息
    作者简介:

    宋 巍(1976-),男,硕士,高级工程师,主要从事电网规划设计及电力系统发展研究. E-mail:songweidj95@126.com

    通讯作者:

    范志强(1989-),男,博士,讲师,主要从事爆炸冲击动态测试技术研究. E-mail:fanzhq@nuc.edu.cn

  • 中图分类号: O383.3

De-Icing Power Line by Linear Shaped Explosive Blast

  • 摘要: 针对输电线由于覆冰引起各类事故灾害的问题,采用线装药爆破方式进行除冰是一种新思路。为研究该方法的除冰机理和关键技术,通过小尺寸覆冰输电线的爆破实验和数值模拟,研究爆破除冰机理和爆破参数影响规律。结果表明:爆炸载荷的直接作用使迎爆面覆冰大量粉碎,背部覆冰内形成贯穿型裂纹,随后解体或者在电线的冲击振动下脱除。当覆冰对导爆索约束较弱时,爆炸能量从约束较弱侧迅速衰减,当覆冰无法形成贯穿型裂纹时则不能脱冰。导爆索位于覆冰内部时有利于爆破除冰,因此应根据覆冰厚度预估装药间隔。

     

  • 图  实验模拟覆冰输电线试样

    Figure  1.  Experimental sample of ice-coated power line

    图  A型导爆索实验冰体破碎效果

    Figure  2.  Crushing results of Type A detonating cord

    图  覆冰破碎过程(A型导爆索,$\delta$=25 mm)

    Figure  4.  Ice crushing process (Type A detonating cord, $\delta$=25 mm)

    图  覆冰破碎过程(A型导爆索,$\delta$=20 mm)

    Figure  3.  Ice crushing process (Type A detonating cord, $\delta$=20 mm)

    图  B型导爆索脱冰效果

    Figure  5.  Crushing results of Type B detonating cord

    图  覆冰-输电线有限元模型

    Figure  6.  Finite element model of ice-coated power line

    图  典型工况的数值模拟结果

    Figure  7.  Numerical simulation results of typical tests

    图  爆炸载荷作用下覆冰破碎过程(A-20)

    Figure  8.  Ice crushing process under blast (A-20)

    图  爆炸载荷作用下覆冰破碎过程(B-20)

    Figure  9.  Ice crushing process under blast (B-20)

  • [1] 韩军科, 杨靖波, 杨风利. 500 kV酒杯塔覆冰破坏形态分析 [J]. 电力建设, 2009, 30(11): 21–23.

    HAN J K, YANG J B, YANG F L. Analysis of failure mode on iced 500 kV transmission cup type tower [J]. Electric Power Construction, 2009, 30(11): 21–23.
    [2] 陈科全, 严波, 吕欣, 等. 四分裂导线机械式除冰装置及可行性研究 [J]. 振动与冲击, 2013, 32(20): 48–54. doi: 10.3969/j.issn.1000-3835.2013.20.010

    CHEN K Q, YAN B, LÜ X, et al. A mechanical de-icing device for iced quad-bundled conductors and its feasibility [J]. Journal of Vibration and Shock, 2013, 32(20): 48–54. doi: 10.3969/j.issn.1000-3835.2013.20.010
    [3] 向往, 谭艳军, 陆佳政, 等. 交直流输电线路热力融冰技术分析 [J]. 电力建设, 2014, 35(8): 101–107. doi: 10.3969/j.issn.1000-7229.2014.08.018

    XIANG W, TAN Y J, LU J Z, et al. Thermodynamic ice-melting technology for AC/DC transmission lines [J]. Electric Power Construction, 2014, 35(8): 101–107. doi: 10.3969/j.issn.1000-7229.2014.08.018
    [4] 谷山强, 陈家宏, 蔡炜, 等. 输电线路激光除冰技术试验分析及工程应用设计 [J]. 高压电技术, 2009, 35(9): 2243–2249.

    GU S Q, CHEN J H, CAI W, et al. Experimental analysis and engineering designing of laser de-icing technology for transmission lines [J]. High Voltage Engineering, 2009, 35(9): 2243–2249.
    [5] LI Q Y, BAI T, ZHU C L. Deicing excitation simulation and structural dynamic analysis of the electro-impulse deicing system [J]. Applied Mechanics and Materials, 2011, 66/68: 390–395. doi: 10.4028/www.scientific.net/AMM.66-68
    [6] 范志强, 马宏昊, 沈兆武, 等. 水下连续脉冲冲击波的声学特性 [J]. 爆炸与冲击, 2013, 33(5): 501–506. doi: 10.3969/j.issn.1001-1455.2013.05.008

    FAN Z Q, MA H H, SHEN Z W, et al. Acoustic characteristics of underwater continuous pulse shock wave [J]. Explosion and Shock Waves, 2013, 33(5): 501–506. doi: 10.3969/j.issn.1001-1455.2013.05.008
    [7] 贾虎, 沈兆武. 纤维爆炸索水下爆炸声信号特征的小波分析 [J]. 振动与冲击, 2011, 30(9): 243–247. doi: 10.3969/j.issn.1000-3835.2011.09.050

    JIA H, SHEN Z W. Characteristics of underwater detonation acoustics signals of fiber-based detonating cord based on wavelet analysis and power spectrum [J]. Journal of Vibration and Shock, 2011, 30(9): 243–247. doi: 10.3969/j.issn.1000-3835.2011.09.050
    [8] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [Z]. Livermore, CA: Livermore Software Technology Corporation, 2015.
    [9] 丁金波, 董威. 表面粗糙度对冰冻黏强度影响试验研究 [J]. 航空发动机, 2012, 38(4): 42–46. doi: 10.3969/j.issn.1672-3147.2012.04.011

    DING J B, DONG W. Experimental study of influence of surface roughness on ice adhesion [J]. Aeroengine, 2012, 38(4): 42–46. doi: 10.3969/j.issn.1672-3147.2012.04.011
    [10] TAVANA H, NEUMANN A W. Recent progress in the determination of solid surface tensions from contact angles [J]. Advances in Colloid and Interface Science, 2007, 132(1): 1–32. doi: 10.1016/j.cis.2006.11.024
    [11] 王国刚, 穆静静, 周红伟, 等. 覆冰垂直粘结强度的测试研究 [J]. 工程热物理学报, 2012, 33(2): 282–284.

    WANG G G, MU J J, ZHOU H W, et al. Research on the test technology for vertical ice adhesion strength [J]. Journal of Engineering Thermophysics, 2012, 33(2): 282–284.
    [12] HU Z K, GUI H B, XIA P P, et al. Dynamic response analys is of the collision between ice and propeller at high speed [C]//The Society for Underwater Technology Conference (SUTTC 2013). Shanghai, China, 2013: 72–76.
    [13] XIA P P, GUI H B, HU Z K. The effect of the excitation position on the sound radiation of propeller [C]//The Society for Underwater Technology Conference (SUTTC 2013). Shanghai, China, 2013: 82–86.
    [14] JONES S J. A review of the strength of iceberg and other freshwater ice and the effect of temperature [J]. Cold Regions Science & Technology, 2007, 47(3): 256–262.
    [15] ZHANG L M, LI Z J, JIA Q, et al. Uniaxial compressive strengths of artificial freshwater ice [J]. Advanced Materials Research, 2011, 243: 4634–4637.
    [16] 李志军, 周庆, 汪恩良, 等. 加载方式对冰单轴压缩强度影响的试验研究 [J]. 水利学报, 2013, 44(9): 1037–1043.

    LI Z J, ZHOU Q, WANG E L, et al. Experimental study on the loading mode effects on the ice uniaxial compressive strength [J]. Journal of Hydraulic Engineering, 2013, 44(9): 1037–1043.
  • 加载中
图(9)
计量
  • 文章访问数:  4935
  • HTML全文浏览量:  2266
  • PDF下载量:  21
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-08-21

目录

    /

    返回文章
    返回