近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能

赵春风 王强 王静峰 张增德

赵春风, 王强, 王静峰, 张增德. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能[J]. 高压物理学报, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
引用本文: 赵春风, 王强, 王静峰, 张增德. 近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能[J]. 高压物理学报, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
ZHAO Chunfeng, WANG Qiang, WANG Jingfeng, ZHANG Zengde. Blast Resistance of Containment Dome Reinforced Concrete Slab in NPP under Close-in Explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598
Citation: ZHAO Chunfeng, WANG Qiang, WANG Jingfeng, ZHANG Zengde. Blast Resistance of Containment Dome Reinforced Concrete Slab in NPP under Close-in Explosion[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 025101. doi: 10.11858/gywlxb.20180598

近场爆炸作用下核电厂安全壳穹顶钢筋混凝土板的抗爆性能

doi: 10.11858/gywlxb.20180598
基金项目: 国家自然科学青年基金(51508148);中国博士后科学基金(2016T90563)
详细信息
    作者简介:

    赵春风(1983-),男,博士,副教授,主要从事结构工程和防灾减灾工程研究.E-mail: zhaowindy@126.com

  • 中图分类号: O347

Blast Resistance of Containment Dome Reinforced Concrete Slab in NPP under Close-in Explosion

  • 摘要: 安全壳是核电厂的最后一道防线,其穹顶采用60°配筋混凝土进行设计和建造,配筋方式特殊。借助ANSYS/LS-DYNA,采用CONWEP爆炸模型,建立60°和普通配筋的混凝土板有限元模型,研究了近场爆炸作用下60°配筋混凝土板的动态响应,参数化分析了板厚、药量、钢筋屈服强度和混凝土强度等因素对60°配筋钢筋混凝土板抗爆性能的影响规律;对比研究了普通配筋和60°配筋混凝土板的中心挠度、变形和应力云图,基于数值分析结果,拟合得到两种配筋方式混凝土板中心挠度最大值与药量之间的关系曲线,利用回归分析得到其计算公式。研究结果表明:在相同含钢量的条件下,60°配筋混凝土板中心挠度最大提高60.22%,抗爆性能更强,拟合公式可以较好地预测60°配筋混凝土板的挠度变化。

     

  • 图  穹顶结构钢筋布置图

    Figure  1.  Layout of reinforcement bar in dome

    图  60°配筋混凝土板几何模型

    Figure  2.  Geometrical model of reinforced concrete slab with 60° of configuration

    图  有限元模型

    Figure  3.  Finite element model

    图  钢筋混凝土板爆炸试验[16]

    Figure  4.  Blast experiment of reinforced concrete slab[16]

    图  有限元分析结果

    Figure  5.  Results of finite element model simulations

    图  不同板厚度下位移时程曲线

    Figure  6.  Displacement-time history for different slab thicknesses

    图  峰值位移-板厚关系

    Figure  7.  Peak displacement vs. slab thickness

    图  不同厚度混凝土板迎爆面第一主应力

    Figure  8.  Maximum first principal stress on upper surface of reinforced concrete slab with different thicknesses

    图  不同炸药质量下位移时程曲线

    Figure  9.  Displacement-time history for different explosive masses

    图  10  峰值位移-炸药质量关系

    Figure  10.  Peak displacement vs. mass of explosive

    图  11  不同药量下混凝土板迎爆面最大主应力

    Figure  11.  Maximum first principal stress on upper surface of reinforced concrete slab under different explosive charge

    图  12  不同混凝土强度下位移时程曲线

    Figure  12.  Displacement-time history for different concrete strength

    图  13  峰值位移-混凝土强度关系

    Figure  13.  Peak displacement vs. concrete strength

    图  14  不同强度的混凝土板迎爆面最大主应力

    Figure  14.  Maximum first principal stress on upper surface of reinforced concrete slab with various concrete strength

    图  15  位移时程曲线

    Figure  15.  Displacement-time history curve

    图  16  峰值位移与钢筋屈服强度关系

    Figure  16.  Peak displacement vs. yield strength of steel bar

    图  17  不同钢筋屈服强度时混凝土板迎爆面最大主应力

    Figure  17.  Maximum first principal stress on upper surface of reinforced concrete slab with different yield strength of steel bar

    图  18  普通配筋混凝土板几何模型与有限元模型

    Figure  18.  Geometric model and finite element model of ordinary reinforced concrete slab

    图  19  不同配筋混凝土板位移时程曲线

    Figure  19.  Displacement-time history of different reinforced concrete slabs

    图  20  钢筋混凝土板位移变化云图

    Figure  20.  Displacement contour of reinforced concrete slabs

    图  21  普通配筋混凝土板最大主应力

    Figure  21.  Maximum first principal stress of ordinary reinforced concrete slab

    图  22  60°配筋混凝土板最大主应力

    Figure  22.  Maximum first principal stress of reinforced concrete slab with 60° configuration for reinforcement

    图  23  普通配筋混凝土板挠度与炸药量关系

    Figure  23.  Relationship between deflection and explosive charge for ordinary reinforced concrete slab

    图  24  60°配筋混凝土板挠度与炸药量关系

    Figure  24.  Relationship between deflection and explosive charge for reinforced concrete slab with 60° configuration

    表  1  试件几何尺寸和参数

    Table  1.   Geometry and parameters of specimens

    No.Dimension/(cm×cm×cm)fcu.k/MPaArrangement of reinforcementReinforcement barW/kgR/mZ/(m·kg–1/3
    O1-1120×120×430$ \varnothing$8@100HPB3001.360.40.361
    O1-2120×120×530$ \varnothing$8@100HPB3001.360.40.361
    O1-3120×120×630$ \varnothing$8@100HPB3001.360.40.361
    O2-1120×120×430$ \varnothing$8@100HPB3000.410.40.538
    O2-2120×120×430$ \varnothing$8@100HPB3006.520.40.214
    O3-1120×120×450$ \varnothing$8@100HPB3001.360.40.361
    O3-2120×120×460$ \varnothing$8@100HPB3001.360.40.361
    O4-1120×120×430$ \varnothing$8@100HRB3351.360.40.361
    O4-2120×120×430$ \varnothing$8@100HRB4001.360.40.361
    N1-1120×120×430$ \varnothing$8-60°HPB3001.360.40.361
    N1-2120×120×530$ \varnothing$8-60°HPB3001.360.40.361
    N1-3120×120×630$ \varnothing$8-60°HPB3001.360.40.361
    N2-1120×120×430$ \varnothing$8-60°HPB3000.410.40.538
    N2-2120×120×430$ \varnothing$8-60°HPB3006.520.40.214
    N3-1120×120×450$ \varnothing$8-60°HPB3001.360.40.361
    N3-2120×120×460$ \varnothing$8-60°HPB3001.360.40.361
    N4-1120×120×430$ \varnothing$8-60°HRB3351.360.40.361
    N4-2120×120×430$ \varnothing$8-60°HRB4001.360.40.361
    下载: 导出CSV

    表  2  钢筋参数

    Table  2.   Parameters of reinforcement bar

    ρ/(g·cm−3)E/GPaνσ0/MPaEtan/MPaβC/s−1
    7.892000.33351000040
    下载: 导出CSV

    表  3  数值计算与试验结果对比

    Table  3.   Comparison of calculated and test results

    R/mW/kgZ/(m·kg−1/3)Maximum deflection/mmError/%
    Finite element simulationTest[16]
    0.40.460.51837.735.27.10
    下载: 导出CSV
  • [1] YAO S, ZHANG D, CHEN X, et al. Experimental and numerical study on the dynamic response of RC slabs under blast loading [J]. Engineering Failure Analysis, 2016, 66: 120–129. doi: 10.1016/j.engfailanal.2016.04.027
    [2] 汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析 [J]. 兵工学报, 2010(Suppl 1): 102–106

    WANG W, ZHANG D, LU F Y, et al. Analysis for blast resistance and damage mode of reinforced concrete slab subjected to explosbe load [J]. Acta Armamentarii, 2010(Suppl 1): 102–106
    [3] 王靖. 近距离爆炸下钢筋混凝土板局部破坏试验研究与数值模拟 [D]. 天津: 天津大学, 2017.

    WANG J. Experimental and numerical studies on thelocal damage of reinforced concrete slabsunder close-in explosions [D]. Tianjin: Tianjin University, 2017.
    [4] 王淞, 刘筱玲. 双向支撑钢筋混凝土板在爆炸荷载作用下破坏模式与影响因素分析 [J]. 四川建筑, 2017, 37(2): 160–162 doi: 10.3969/j.issn.1007-8983.2017.02.054

    WANG S, LIU X L. Analysis of influence factors and on the dynamic response of reinforced concrete slabs of double supported under blast loading [J]. Sichuan Architecture, 2017, 37(2): 160–162 doi: 10.3969/j.issn.1007-8983.2017.02.054
    [5] PANDEY A K, KUMAR R, PAUL D K, et al. Non-linear response of reinforced concrete containment structure under blast loading [J]. Nuclear Engineering & Design, 2006, 236(9): 993–1002.
    [6] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical & Applied Fracture Mechanics, 2013(63/64): 54–62.
    [7] 赵春风, 陈健云. 内爆荷载作用下钢筋混凝土安全壳的非线性响应分析 [J]. 爆炸与冲击, 2013, 33(6): 667–672 doi: 10.3969/j.issn.1001-1455.2013.06.017

    ZHAO C F, CHEN J Y. Dynamic responses of reinforced concrete containment subjected to internal blast loading [J]. Explosion and Shock Waves, 2013, 33(6): 667–672 doi: 10.3969/j.issn.1001-1455.2013.06.017
    [8] 赵春风. 强震及爆炸荷载作用下核岛厂房动力响应及减震抗爆措施研究 [D]. 大连: 大连理工大学, 2014: 1–20.

    ZHAO C F. Study on dynamic response and measures of seismic reduiction and anti-exposion of nuclear island subjected to strong earthquakes and blast loads [D]. Dalian: Dalian University of Technology, 2014: 1–20.
    [9] ZHAO C F, CHEN J Y, WANG Y, et al. Damage mechanism and response of reinforced concrete containment structure under internal blast loading [J]. Theoretical & Applied Fracture Mechanics, 2012, 61(1): 12–20.
    [10] 刘云飞, 王天运, 贺锋, 等. 核反应堆预应力钢筋混凝土安全壳内爆炸数值分析 [J]. 工程力学, 2007, 24(8): 168–172 doi: 10.3969/j.issn.1000-4750.2007.08.030

    LIU Y F, WANG T Y, HE F, et al. Numerical simulation for pre-stressed concrete containment under internal explosive loading [J]. Engineering Mechanics, 2007, 24(8): 168–172 doi: 10.3969/j.issn.1000-4750.2007.08.030
    [11] ZHANG T, WU H, FANG Q, et al. Numerical simulations of nuclear power plant containment subjected to aircraft impact [J]. Nuclear Engineering & Design, 2017, 320: 207–221.
    [12] MALVAR L J, ROSS C A. A Review of strain rate effects for concrete in tension [J]. Construction and Building Materials, 1998, 95(6): 735–739.
    [13] CLARK L A. CEB-FIP model code 1990 [J]. Programs Usenix Unix Supplementary Documents, 2008, 40(95): 233–235.
    [14] HALLQUIST J O. LS-DYNA keyword user’s manual [M]. Livermore: Livermore Software Technology Corporation, 2007: 1–2.
    [15] MALVAR L J. Review of static and dynamic properties of steel reinforcing bars [J]. Materials Journal, 1998, 95(5): 609–616.
    [16] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha: National University of Defense Technology, 2012.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  7159
  • HTML全文浏览量:  4255
  • PDF下载量:  48
出版历程
  • 收稿日期:  2018-07-13
  • 修回日期:  2018-08-03

目录

    /

    返回文章
    返回