距离参数对浅水中气泡运动影响规律的实验和数值模拟

孟祎 张舵 郑监

孟祎, 张舵, 郑监. 距离参数对浅水中气泡运动影响规律的实验和数值模拟[J]. 高压物理学报, 2018, 32(6): 065103. doi: 10.11858/gywlxb.20180583
引用本文: 孟祎, 张舵, 郑监. 距离参数对浅水中气泡运动影响规律的实验和数值模拟[J]. 高压物理学报, 2018, 32(6): 065103. doi: 10.11858/gywlxb.20180583
MENG Yi, ZHANG Duo, ZHENG Jian. Experimental and Numerical Simulation Study on the Influence of Distance Parameter on Bubble Motion in Shallow Water[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065103. doi: 10.11858/gywlxb.20180583
Citation: MENG Yi, ZHANG Duo, ZHENG Jian. Experimental and Numerical Simulation Study on the Influence of Distance Parameter on Bubble Motion in Shallow Water[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065103. doi: 10.11858/gywlxb.20180583

距离参数对浅水中气泡运动影响规律的实验和数值模拟

doi: 10.11858/gywlxb.20180583
详细信息
    作者简介:

    孟祎(1994-), 女, 硕士研究生, 主要从事计算流体力学与应用方面的研究. E-mail:18390951358@qq.com

    通讯作者:

    张舵(1977—),男,博士,副教授,主要从事结构爆炸破坏效应与评估技术研究.E-mail:zhangduo@nudt.edu.cn

  • 中图分类号: O359.1

Experimental and Numerical Simulation Study on the Influence of Distance Parameter on Bubble Motion in Shallow Water

  • 摘要: 当爆炸气泡在浅水中运动时,同时受到自由面和水底壁面的作用而产生极其复杂的水面现象,气泡的运动特性与在自由场中或单一边界附近处爆炸相比会发生很大变化。为探究其规律,通过电火花诱导气泡实验,利用高速摄影技术对气泡与组合多边界的相互作用进行了研究,总结了自由面距离(γf)和壁面距离(γw)对气泡运动和水冢类型的影响。并用OpenFOAM进行了数值模拟,分析了距离参数对射流载荷的影响。结果表明:自由面距离参数较壁面距离参数对水冢类型影响更大;射流速度随自由面距离的增大而减小,在0 < γw < 2时,射流速度随壁面距离的增大先减小后增大;壁面压力与距离呈负相关,射流冲击面积与距离呈正相关。

     

  • 图  实验装置布置图

    Figure  1.  Layout of experimental equipment

    图  自由场中气泡脉动模型的边界条件[11]

    Figure  2.  Boundary patches for CFD of single bubble pulsation in a free field[11]

    图  工况Ⅰ(1)气泡开始收缩和射流穿透气泡瞬间数值模拟结果

    Figure  3.  Instantaneous simulation results of bubble shrinking and penetrated by jet in condition Ⅰ(1)

    图  工况Ⅱ(1)气泡开始收缩和射流穿透气泡瞬间数值模拟结果

    Figure  4.  Instantaneous simulation results of bubble shrinking and penetrated by jet in condition Ⅱ(1)

    图  自由液面与水底固壁之间气泡运动特性(γw=0.31,γf=0.63)[12]

    Figure  5.  Characteristics of bubble motion between free surface and bottom wall (γw=0.31, γf=0.63)[12]

    图  自由液面与水底固壁之间气泡运动特性(γw=0.31,γf=1.54)

    Figure  6.  Characteristics of bubble motion between free surface and bottom wall (γw=0.31, γf=1.54)

    图  自由液面与水底固壁之间气泡运动特性(γw=0.31,γf=2.26)

    Figure  7.  Characteristics of bubble motion between free surface and bottom wall (γw=0.31, γf=2.26)

    图  自由液面与水底固壁之间气泡运动特性(γf=0.38,γw=0.75)[12]

    Figure  8.  Characteristics of bubble motion between free surface and bottom wall (γf=0.38, γw=0.75)[12]

    图  自由液面与水底固壁之间气泡运动特性(γf=0.38,γw=1.88)

    Figure  9.  Characteristics of bubble motion between free surface and bottom wall (γf=0.38, γw=1.88)

    图  10  自由液面与水底固壁之间气泡运动特性(γf=0.38,γw=3.01)

    Figure  10.  Characteristics of bubble motion between free surface and bottom wall (γf=0.38, γw=3.01)

    图  11  水冢形态分布

    Figure  11.  Distribution of water mounds shape

    图  12  气泡运动模型图

    Figure  12.  Bubble motion model diagram

    图  13  壁面压力沿气泡径向分布图

    Figure  13.  Distribution diagram of pressure on the wall along the bubble radius

    图  14  “接触射流”与“非接触射流”示意图

    Figure  14.  Schematic diagram of "contact jet" and "non-contact jet"

    图  15  水冢速度vw-时间曲线(γw=0.31)

    Figure  15.  Variation of the velocity at the top of the dome with time (γw=0.31)

    图  16  水冢速度vw-时间曲线(γf=0.91,γw=0、0.91和1.82)

    Figure  16.  Variation of the velocity at the top of the dome with time (γf=0.91;γw=0, 0.91 and 1.82)

    图  17  气泡射流速度vj随距离参数的变化

    Figure  17.  The curve of bubble jet velocity with distance parameter

    图  18  壁面压力p随自由面距离γf的变化

    Figure  18.  Variation of wall pressure with free surface distance parameter

    图  19  壁面压力p随壁面距离γw的变化

    Figure  19.  Variation of wall pressure with wall distance parameter

    图  20  压力有效宽度随自由面距离γf的变化

    Figure  20.  Curve of pressure width with free surface distance parameter

    图  21  压力有效宽度随壁面距离γw的变化

    Figure  21.  Curve of pressure width with wall distance parameter

    表  1  实验工况设计

    Table  1.   Experimental conditions

    Group Number γf γw
    1 0.63
    2 1.54 0.31
    3 2.26
    1 0.75
    2 0.38 1.88
    3 3.01
    下载: 导出CSV

    表  2  自由场中气泡脉动模型的CFD边界条件

    Table  2.   Boundary conditions for CFD of single bubble pulsation in a free field

    Boundary α p U T
    Empty (left) Empty Empty Empty Empty
    Advective (right & top) Advective Advective Advective Advective
    Wedge (front & back) Wedge Wedge Wedge Wedge
    Wall (bottom) zeroGradient fixedValue(0, 0, 0) zeroGradient zeroGradient
    下载: 导出CSV

    表  3  气泡半径和周期的对比[11]

    Table  3.   Comparation of the bubble radius and the period[11]

    Charge radius r/cm Charge amount W/g Rm/cm T/ms
    Empirical Simulation Deviation/% Empirical Simulation Deviation/%
    0.2 0.055 6.0 6.3 6.18 11.5 11.2 -2.8
    0.3 0.184 8.9 8.3 -6.6 17.2 14.6 -15.3
    0.4 0.437 11.9 10.6 -10.1 23.0 18.5 -19.5
    下载: 导出CSV
  • [1] CUI P, ZHANG A M, WANG S P, et al.Experimental investigation of bubble dynamics near the bilge with a circular opening[J]. Applied Ocean Research, 2013, 41(6):65-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a76d2ab580aec124530734ba584bb8de
    [2] PLESSET M S.The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3):277-282. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3259667
    [3] KLASEBOER E, HUNG K C, WANG C, et al.Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure[J]. Journal of Fluid Mechanics, 2005, 537:387-413. doi: 10.1017/S0022112005005306
    [4] KOUKOUVINIS P, GAVAISES M, SUPPONEN O, et al.Numerical simulation of a collapsing bubble subject to gravity[J]. Physics of Fluids, 2016, 28(3):032110. doi: 10.1063/1.4944561
    [5] LIU L T, YAO X L, ZHANG A M, et al.Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method[J]. Physics of Fluids, 2017, 29(1):012105. doi: 10.1063/1.4974073
    [6] LI S, HAN R, ZHANG A M, et al.Analysis of pressure field generated by a collapsing bubble[J]. Ocean Engineering, 2016, 117:22-38. doi: 10.1016/j.oceaneng.2016.03.016
    [7] 郑监, 张舵, 蒋邦海, 等.气泡与自由液面相互作用形成水射流的机理研究[J].物理学报, 2017, 66(4):169-178. http://d.old.wanfangdata.com.cn/Periodical/wlxb201704020

    ZHENG J, ZHANG D, JIANG B H, et al.Mechanism study on water jet formation caused by interaction between bubbles and free liquid surface[J]. Acta Physica Sinica, 2017, 66(4):169-178. http://d.old.wanfangdata.com.cn/Periodical/wlxb201704020
    [8] 梁浩哲, 张庆明, 杨莉.刚性壁面附近深水爆炸气泡射流特性数值模拟[J].兵工学报, 2017, 38(增刊1):130-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017102000026481

    LIANG H Z, ZHANG Q M, YANG L.Numerical simulation of deep water explosion bubble jet characteristics near rigid wall surface[J]. Acta Armamentarii, 2017, 38(Suppl 1):130-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017102000026481
    [9] 董琪, 韦灼彬, 唐廷, 等.爆炸深度对浅水爆炸气泡脉动的影响[J].高压物理学报, 2018, 32(2):024102. http://www.gywlxb.cn/CN/abstract/abstract2057.shtml

    DONG Q, WEI Z B, TANG T, et al.Effects of explosion depth on the fluctuation of bubbles in shallow water explosion[J]. Chinese Journal of High Pressure Physics, 2008, 32(2):024102. http://www.gywlxb.cn/CN/abstract/abstract2057.shtml
    [10] 王诗平, 姚熊亮, 张阿漫, 等.三维气泡与刚性壁面的相互作用研究[J].计算力学学报, 2008, 25(6):803-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000196118

    WANG S P, YAO X L, ZHANG A M, et al.Interaction between three-dimensional bubbles and rigid walls[J]. Chinese Journal of Computational Mechanics, 2008, 25(6):803-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201303040000196118
    [11] MENG Y, ZHANG D.Simulation of bubble expansion and collapse between a free surface and a rigid wall[C]//13th OpenFOAM Workshop (OFW13).Shanghai, China, 2018: 25-28.
    [12] 孟祎, 张舵.浅水中气泡运动及水射流行为实验研究[C]//第十届全国爆炸力学实验技术学术会议.无锡, 2018.

    MENG Y, ZHANG D.Experimental research on bubble motion and water jet behavior in shallow water[C]//10th National Academic Conference on Experimental Technology of Explosive Mechanics.Wuxi, China, 2018.
    [13] 倪宝玉.水下黏性气泡(空泡)运动和载荷特性研究[D].哈尔滨: 哈尔滨工程大学, 2012: 140-153. http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134011.htm

    NI B Y.Study on motion and load characteristics of underwater viscous bubbles (air bubbles)[D]. Harbin: Harbin Engineering University, 2012: 140-153. http://cdmd.cnki.com.cn/Article/CDMD-10217-1014134011.htm
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  6070
  • HTML全文浏览量:  3054
  • PDF下载量:  13
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-07-05

目录

    /

    返回文章
    返回