五羰基铁气相爆轰法合成纳米碳胶囊

李雪琪 李晓杰 闫鸿浩 王小红 潘训岑

李雪琪, 李晓杰, 闫鸿浩, 王小红, 潘训岑. 五羰基铁气相爆轰法合成纳米碳胶囊[J]. 高压物理学报, 2018, 32(6): 063401. doi: 10.11858/gywlxb.20180562
引用本文: 李雪琪, 李晓杰, 闫鸿浩, 王小红, 潘训岑. 五羰基铁气相爆轰法合成纳米碳胶囊[J]. 高压物理学报, 2018, 32(6): 063401. doi: 10.11858/gywlxb.20180562
LI Xueqi, LI Xiaojie, YAN Honghao, WANG Xiaohong, PAN Xuncen. Synthesis of Nanocarbon Capsules by Vapor Detonation of Pentacarbonyl Iron[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 063401. doi: 10.11858/gywlxb.20180562
Citation: LI Xueqi, LI Xiaojie, YAN Honghao, WANG Xiaohong, PAN Xuncen. Synthesis of Nanocarbon Capsules by Vapor Detonation of Pentacarbonyl Iron[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 063401. doi: 10.11858/gywlxb.20180562

五羰基铁气相爆轰法合成纳米碳胶囊

doi: 10.11858/gywlxb.20180562
基金项目: 

国家自然科学基金 11272081

国家自然科学基金 11672067

国家自然科学基金 11672068

详细信息
    作者简介:

    李雪琪(1992-), 女, 博士研究生, 主要从事爆轰法合成纳米材料研究. E-mail:348379150@qq.com

    通讯作者:

    李晓杰(1963-), 男, 博士, 教授, 主要从事爆轰及其效应研究. E-mail:Lixq@mail.dlut.edu.cn

  • 中图分类号: O389

Synthesis of Nanocarbon Capsules by Vapor Detonation of Pentacarbonyl Iron

  • 摘要: 采用气相爆轰法,以乙炔气体、氧气和五羰基铁为原料成功地合成了比表面积为253.857 m2/g的胶囊状碳纳米材料。对反应的前置实验九羰基二铁的热分解反应的研究表明,在60~140℃之间,九羰基二铁热分解为五羰基铁和十二羰基三铁。对爆轰产物进行了XRD、TEM和BET物理吸附实验,结果表明:产物XRD图谱石墨峰明显,产物主要为具有石墨化倾向的薄层胶囊状无定形碳结构;实验产物比表面积为253.857 m2/g,孔体积为0.940 cm3/g,平均孔径为2.731 nm;吸附-脱附曲线回滞环类型为H3型,孔结构主要为颗粒堆积而形成的狭缝孔;爆轰产物比表面积较大,具有较强的吸附能力。证实了同样采用铁作为触媒,乙炔在不添加惰性气体作为缓冲剂的情况下,由于爆速过高而无法用于合成碳纳米管。

     

  • 图  气相爆轰管的示意图

    Figure  1.  Schematic of gaseous detonation tube

    1.Heating system; 2.Explosion gas; 3.Oil inlet; 4.Sealed flange; 5.Filling port; 6.Oil outlet; 7.Vacuometer; 8.Intake valve; 9.Vacuum valve; 10.Main valve; 11.Ignition plug; 12.Reactor of iron pentacarbonyl

    图  爆轰产物的XRD图谱

    Figure  2.  XRD spectrums of detonation products

    图  爆轰产物的TEM图像

    Figure  3.  TEM images of detonation products

    图  产物吸附-脱附等温线和其相应的孔径分布图

    Figure  4.  Adsorption-desorption isotherms of product and their corresponding pore size distributions

    表  1  实验的主要参数

    Table  1.   Major experimental parameters

    Experiment No. Initial temperature/K n(C2H2):n(O2) Partial pressure of acetylene/kPa Partial pressure of oxygen/kPa Mass of Fe2(CO)9/g
    1 400 4:1 40 10 0.5
    2 400 3:1 45 15 0.5
    3 400 2:1 40 20 0.5
    4 400 3:1 60 20 0.5
    下载: 导出CSV

    表  2  九羰基二铁分解实验参数

    Table  2.   Various parameters in the experiment of nonacarbonyldiiron decomposition

    Experiment No. Mass of Fe2(CO)9/g Initial reading/kPa Final reading/kPa Pressure change Δp0/kPa
    1 2 2.00 4.11 2.11
    2 4 2.00 6.29 4.29
    3 8 2.00 10.52 8.52
    4 12 2.00 14.44 12.44
    下载: 导出CSV

    表  3  实验爆轰参数

    Table  3.   Detonation parameters of experiments

    Experiment No. Qe/(kJ·g-1) D/(m·s-1) pJ/MPa T/K
    1 10.3 2 751.33 1.43 4 295.47
    2 10.6 2 799.19 1.79 4 498.55
    3 11.2 2 874.60 1.92 4 815.61
    4 10.6 2 799.19 2.39 4 498.55
    下载: 导出CSV
  • [1] CAO G, WANG Y.Nanostructures and nanomaterials[M].Seattle, WA:World Scientific Publishing, 2015.
    [2] WU G.Raman spectroscopy-the information in the peak strength[M].Beijing:Science Press, 2013.
    [3] LI X, LI X, WANG X, et al.Characterization of carbon-encapsulated permalloy nanoparticles prepared through detonation[J].Materials Research Express, 2017, 4(7):075024. doi: 10.1088/2053-1591/aa772f
    [4] PRAMANIK A, BISWAS S, KOLE A K, et al.Template-free hydrothermal synthesis of amphibious fluorescent carbon nanorice towards anti-counterfeiting applications and unleashing its nonlinear optical properties[J].RSC Advances, 2016, 6(101):99060-99071. doi: 10.1039/C6RA20442B
    [5] TIWARY C S, MUDAKAVI R J, KISHORE S, et al.Magnetic iron nanoparticles for in vivo targeted delivery and as biocompatible contrast agents[J].RSC Advances, 2016, 6(115):114344-114352. doi: 10.1039/C6RA14817D
    [6] PRAMANIK A, KOLE A K, KRISHNARAJ R N, et al.A novel technique of synthesis of highly fluorescent carbon nanoparticles from broth constituent and in-vivo bioimaging of C.elegans[J].Journal of Fluorescence, 2016, 26(5):1541-1548. doi: 10.1007/s10895-016-1854-8
    [7] SUVARNAPHAET P, TIWARY C S, WETCHARUNGSRI J, et al.Blue photoluminescent carbon nanodots from limeade[J].Materials Science and Engineering C, 2016, 69(1):914-921. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83ffc2f246bd2e0046ae02db11b80dd8
    [8] 闫鸿浩, 吴林松, 李晓杰, 等.颗粒长大模型在气相爆轰合成纳米材料中的应用[J].稀有金属材料与工程, 2015, 44(5):1144-1148. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017245425.htm

    YAN H H, WU L S, LI X J, et al.Application of particles growth model in gaseous detonation of SnO2 nanoparticles[J].Rare Metal Materials and Engineering, 2015, 44(5):1144-1148. http://cdmd.cnki.com.cn/Article/CDMD-10141-1017245425.htm
    [9] 吴林松.气相爆轰法制备TiO2基纳米光催化材料的研究[D].大连: 大连理工大学, 2017.

    WU L S.Study on TiO2-based nano photocatalysts prepared by gaseous detonation method[D].Dalian: Dalian University of Technology, 2017.
    [10] 杨瑞, 李晓杰, 闫鸿浩, 等.二茂铁质量对气相爆轰法合成碳纳米管的影响[J].高压物理学报, 2017, 31(4):389-395. http://www.gywlxb.cn/CN/abstract/abstract1974.shtml

    YANG R, LI X J, YAN H H, et al.Effect of ferrocene precursor mass on gaseous detonation synthesis of carbon nanotubes[J].Chinese Journal of High Pressure Physics, 2017, 31(4):389-395. http://www.gywlxb.cn/CN/abstract/abstract1974.shtml
    [11] 欧阳欣.气相爆燃与爆轰法制备纳米二氧化钛颗粒研究[D].大连: 大连理工大学, 2009. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201308001665.htm

    OUYANG X.Research on synthesis of titanium dioixde nanoparticles gas-phase deflagration and detonation method[D].Dalian: Dalian University of Technology, 2009. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201308001665.htm
    [12] 王新星, 张宝林, 王行展, 等.雾化热分解一氧化五羰基铁制备磁性氧化铁纳米粒子[J].材料工程, 2014(8):51-54. http://d.wanfangdata.com.cn/Periodical/clgc201408010

    WANG X X, ZHANG B L, WANG X Z, et al.Magnetic iron oxide nanoparticles prepared by spray pyrolysis-oxidation of iron pentacarbonyl[J].Journal of Materials Engineering, 2014(8):51-54. http://d.wanfangdata.com.cn/Periodical/clgc201408010
    [13] 郭锴, 唐小恒, 周绪美.化学反应工程[M].北京:化学工业出版社, 2010.

    GUO Y, TANG X H, ZHOU X M.Chemical reaction engineering[M].Beijing:Chemical Industry Press, 2010.
    [14] 周公度.化学辞典[M].北京:化学工业出版社, 2011.

    ZHOU G D.Chemical dictionary[M].Beijing:Chemical Industry Press, 2011.
    [15] 徐士明.理想气体状态方程在计算炸药爆炸参数上的应用[J].沈阳工业学院学报, 1994, 13(3):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400406081

    XU S M.Application of ideal gas state equation in calculation of explosion parameters of explosives[J].Journal of Shenyang Institute of Technology, 1994, 13(3):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400406081
    [16] 杨瑞.气相爆轰(燃)法合成碳纳米管及纳米碳球的研究[D].大连: 大连理工大学, 2017.

    YANG R.Synthesis of carbon nanotubes and carbon nanospheres by gaseous detonation (burning) method[D].Dalian: Dalian University of Technology, 2017.
    [17] 杨瑞, 李晓杰, 闫鸿浩, 等.初始温度及碳源对碳纳米管气相爆轰法合成的影响[J].强激光与粒子束, 2017, 29(2):56-60. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201702010

    YANG R, Li X J, YAN H H, et al.Influence of initial temperature and carbon source on carbon nanotubes prepared by gaseous detonation[J].High Power Laser and Particle Beams, 2017, 29(2):56-60. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201702010
    [18] SONKAR S K, SAXENA M, SAHA M, et al.Carbon nanocubes and nanobricks from pyrolysis of rice[J].Journal of Nanoscience and Nanotechnology, 2010, 10(6):4064-4067. doi: 10.1166/jnn.2010.2007
    [19] 赵铁军, 闫鸿浩, 李晓杰, 等.多壁碳纳米管的爆轰改性[J].高压物理学报, 2017, 31(4):403-408. http://www.gywlxb.cn/CN/abstract/abstract1976.shtml

    ZHAO T J, YAN H H, LI X J, et al.Detonation modification of multi-walled carbon nanotube[J].Chinese Journal of High Pressure Physics, 2017, 31(4):403-408. http://www.gywlxb.cn/CN/abstract/abstract1976.shtml
    [20] DECK C P, VECCHIO K.Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams[J].Carbon, 2006, 44(2):267-275. doi: 10.1016/j.carbon.2005.07.023
    [21] 尹昊.碳基纳米材料的爆炸合成及其机理研究[D].北京: 北京理工大学, 2014.

    YIN H.Study on the explosive synthesis and mechanism of carbon-based nanomaterials[D].Beijing: Beijing Institute of Technology, 2014.
    [22] 曲志明, 王育德.甲烷煤尘爆轰参数计算及实验研究[J].辽宁工程技术大学学报(自然科学版), 2013, 32(3):330-335. http://d.old.wanfangdata.com.cn/Periodical/lngcjsdxxb201303012

    QU Z M, WANG Y D.Experimental study and numerical calculation of methane and coal dust detonation parameters[J].Journal of Liaoning Technical University (Natural Science), 2013, 32(3):330-335. http://d.old.wanfangdata.com.cn/Periodical/lngcjsdxxb201303012
    [23] 曲志明, 王育德, 侯玮.甲烷浓度对甲烷燃烧爆炸特性影响的实验研究[J].煤炭工程, 2013(10):89-91. doi: 10.11799/ce201310030

    QU Z M, WANG Y D, HOU W.Experiment study on methane concentration affected to combustion and explosion features of methane[J].Coal Engineering, 2013(10):89-91. doi: 10.11799/ce201310030
    [24] MOCHALIN V N, SHENDEROVA O, HO D, et al.The properties and applications of nanodiamonds[J].Nature Nanotechnology, 2011, 7(1):11-23. http://d.old.wanfangdata.com.cn/Conference/8706539
    [25] 刘培生.多孔材料比表面积和孔隙形貌的测定方法[J].稀有金属材料与工程, 2006, 35(增刊2):25-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200602349533

    LIU P S.Method for measuring specific surface area and pore morphology of porous materials[J].Rare Metal Materials and Engineering, 2006, 35(Suppl 2):25-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200602349533
    [26] ROUQUEROL J, ROUQUEROL F, LLEWELLYN P, et al.Adsorption by powders and porous solids:principles, methodology and applications[M].2nd ed.New York:Academic Press, 2012.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  8331
  • HTML全文浏览量:  2733
  • PDF下载量:  23
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-06-08

目录

    /

    返回文章
    返回