海陆过渡相煤系页岩的渗流特征

张宏学 刘卫群

张宏学, 刘卫群. 海陆过渡相煤系页岩的渗流特征[J]. 高压物理学报, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
引用本文: 张宏学, 刘卫群. 海陆过渡相煤系页岩的渗流特征[J]. 高压物理学报, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
ZHANG Hongxue, LIU Weiqun. Seepage of Marine-Terrigenous Facies Coal Measures Shale[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556
Citation: ZHANG Hongxue, LIU Weiqun. Seepage of Marine-Terrigenous Facies Coal Measures Shale[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055901. doi: 10.11858/gywlxb.20180556

海陆过渡相煤系页岩的渗流特征

doi: 10.11858/gywlxb.20180556
基金项目: 

安徽省教育厅科研基金 KJ2016A207

详细信息
    作者简介:

    张宏学(1982-), 男, 讲师, 主要从事裂隙岩体渗流研究.E-mail:hxzhang@aust.edu.cn

  • 中图分类号: P618.12;TE312

Seepage of Marine-Terrigenous Facies Coal Measures Shale

  • 摘要: 利用脉冲衰减渗透率仪,测试了海陆过渡相煤系页岩在储层条件、不同应力状态下的渗透率,得到了渗透率随有效应力的演化规律,对比分析煤系页岩和美国Wilcox页岩的渗透率。结果表明:当围压为常数(17 MPa),有效应力从12.5 MPa降至2.0 MPa时,煤系页岩的渗透率范围为2.9×10-19~5.7×10-18 m2,比Wilcox页岩的渗透率高2~3个数量级。根据外部围压pc和内部孔隙压力pp定义有效应力σe=pc-χpp,有效应力系数χ约为1。渗透率试验数据的拟合结果显示,煤系页岩和Wilcox页岩的渗透率随有效应力、围压(常孔隙压力)和孔隙压力(常围压)按指数函数变化。

     

  • 图  脉冲衰减渗透率仪

    Figure  1.  Pulse decay permeameter

    图  脉冲衰减渗透率仪原理

    Figure  2.  Schematic diagram of pulse decay permeameter

    图  围压不变时煤系页岩渗透率随孔隙压力的变化

    Figure  3.  Permeability of shale sample as a function of pore pressure at constant confining pressure

    图  孔隙压力不变时煤系页岩渗透率随围压的变化

    Figure  4.  Permeability of shale sample as a function of confining pressure at constant pore pressure

    图  煤系页岩岩样S-1渗透率的对数随围压和孔隙压力的变化

    Figure  5.  Permeability of coal series shale sample S-1 as a function of confining pressure and pore pressure

    图  围压不变时煤系页岩试样渗透率随有效应力的变化

    Figure  6.  Permeability of shale samples as a function of effective stress at constant confining pressure

    图  煤系页岩和Wilcox页岩的渗透率比较

    Figure  7.  Comparison of permeability of coal series shale and Wilcox shale

    表  1  煤系页岩岩样参数

    Table  1.   Parameters of coal series shale samples

    Sample No.Dimension/(mm×mm)Vp/cm3φ/%
    S-1∅23.88×41.590.945.04
    S-5∅23.29×49.111.185.62
    下载: 导出CSV

    表  2  页岩岩样在不同围压和孔隙压力作用下的渗透率

    Table  2.   Permeability of shale samples under different confining pressures and pore pressures

    pc/MPapp/MPaσe/MPak/m2pc/MPapp/MPaσe/MPak/m2
    S-1S-5WS22.5[21]WS22.7[21]
    174.512.52.9×10-191.8×10-18101332.7×10-192.2×10-19
    178.09.07.6×10-193.0×10-18101559.0×10-201.0×10-19
    1711.55.52.4×10-184.2×10-18101883.0×10-205.6×10-20
    1715.02.04.2×10-185.7×10-18
    下载: 导出CSV
  • [1] 张宏学, 刘卫群.页岩气开采的相关实验、模型和环境效应[J].岩土力学, 2014, 35(增刊2):85-100. http://www.cnki.com.cn/Article/CJFDTotal-MDKT201505008.htm

    ZHANG H X, LIU W Q.Relevant experiments, models and environmental effect of shale gas production[J].Rock and Soil Mechanics, 2014, 35(Suppl 2):85-100. http://www.cnki.com.cn/Article/CJFDTotal-MDKT201505008.htm
    [2] 王道富, 高世葵, 董大忠, 等.中国页岩气资源勘探开发挑战初论[J].天然气工业, 2013, 33(1):8-17. doi: 10.3787/j.issn.1000-0976.2013.01.002

    WANG D F, GAO S K, DONG D Z, et al.A primary discussion on challenges for exploration and development of shale gas resources in China[J].Natural Gas Industry, 2013, 33(1):8-17. doi: 10.3787/j.issn.1000-0976.2013.01.002
    [3] 张金川, 边瑞康, 荆铁亚, 等.页岩气理论研究的基础意义[J].地质通报, 2011, 30(2):318-323. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm

    ZHANG J C, BIAN R K, JING T Y, et al.Fundamental significance of gas shale theoretical research[J].Geological Bulletin of China, 2011, 30(2):318-323. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm
    [4] 张吉振, 李贤庆, 王元, 等.海陆过渡相煤系页岩气成藏条件及储层特征——以四川盆地南部龙潭组为例[J].煤炭学报, 2015, 40(8):1871-1878. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201411013.htm

    ZHANG J Z, LI X Q, WANG Y, et al.Accumulation conditions and reservoir characteristics of marine-terrigenous facies coal measures shale gas from Longtan Formation in South Sichuan Basin[J].Journal of China Coal Society, 2015, 40(8):1871-1878. http://www.cnki.com.cn/Article/CJFDTotal-TDKX201411013.htm
    [5] 黄金亮, 邹才能, 李建忠, 等.川南志留系龙马溪组页岩气形成条件与有利区分析[J].煤炭学报, 2012, 37(5):782-787. http://mall.cnki.net/magazine/Article/MTXB201205014.htm

    HUANG J L, ZOU C N, LI J Z, et al.Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin, China[J].Journal of China Coal Society, 2012, 37(5):782-787. http://mall.cnki.net/magazine/Article/MTXB201205014.htm
    [6] 王阳, 陈洁, 胡琳, 等.沉积环境对页岩气储层的控制作用——以中下扬子区下寒武统筇竹寺组为例[J].煤炭学报, 2013, 38(5):845-850. http://www.oalib.com/paper/4233791

    WANG Y, CHEN J, HU L, et al.Sedimentary environment control on shale gas reservoir:a case study of Lower Cambrian Qiongzhusi Formation in the Middle Lower Yangtze area[J].Journal of China Coal Society, 2013, 38(5):845-850. http://www.oalib.com/paper/4233791
    [7] 罗鹏, 吉利明.陆相页岩气储层特征与潜力评价[J].天然气地球科学, 2013, 24(5):1060-1068. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201506002.htm

    LUO P, JI L M.Reservoir characteristics and potential evaluation of continental shale gas[J].Natural Gas Geoscience, 2013, 24(5):1060-1068. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201506002.htm
    [8] 闫德宇, 黄文辉, 陆小霞, 等.下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比[J].煤炭学报, 2016, 41(7):1778-1787. http://www.cqvip.com/QK/96550X/201607

    YAN D Y, HUANG W H, LU X X, et al.Contrast of reservoir-forming conditions of marine-continental transitional shale gas in different sedimentary environments in the Lower Yangtze area of China[J].Journal of China Coal Society, 2016, 41(7):1778-1787. http://www.cqvip.com/QK/96550X/201607
    [9] CUI X, BUSTIN A M M, BUSTIN R M.Measurements of gas permeability and diffusivity of tight reservoir rocks:different approaches and their applications[J].Geofluids, 2009, 9(3):208-223. doi: 10.1111/gfl.2009.9.issue-3
    [10] VAN NOORT R, YARUSHINA V.Water and CO2 permeability of a shale sample core from Svalbard[J].Energy Procedia, 2016, 97:67-74. doi: 10.1016/j.egypro.2016.10.021
    [11] ZHOU J P, LIU G J, JIANG Y D, et al.Supercritical carbon dioxide fracturing in shale and the coupled effects on the permeability of fractured shale:an experimental study[J].Journal of Natural Gas Science and Engineering, 2016, 36:369-377. doi: 10.1016/j.jngse.2016.10.005
    [12] PAN Z, MA Y, CONNELL L D, et al.Measuring anisotropic permeability using a cubic shale sample in a triaxial cell[J].Journal of Natural Gas Science and Engineering, 2015, 26:336-344. doi: 10.1016/j.jngse.2015.05.036
    [13] MA Y, PAN Z, ZHONG N, et al.Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China[J].Fuel, 2016, 180:106-115. doi: 10.1016/j.fuel.2016.04.029
    [14] LI M H, YIN G Z, XU J, et al.Permeability evolution of shale under anisotropic true triaxial stress conditions[J].International Journal of Coal Geology, 2016, 165:142-148. doi: 10.1016/j.coal.2016.08.017
    [15] CRONIN M B, FLEMINGS P B, BHANDARI A R.Dual-permeability microstratigraphy in the Barnett Shale[J].Journal of Petroleum Science and Engineering, 2016, 142:119-128. doi: 10.1016/j.petrol.2016.02.003
    [16] CAREY J W, ZHOU L, ROUGIER E, et al.Fracture-permeability behavior of shale[J].Journal of Unconventional Oil and Gas Resources, 2015, 11:27-43. doi: 10.1016/j.juogr.2015.04.003
    [17] TAN Y L, PAN Z J, LIU J S, et al.Experimental study of permeability and its anisotropy for shale fracture supported with proppant[J].Journal of Natural Gas Science and Engineering, 2017, 44:250-264. doi: 10.1016/j.jngse.2017.04.020
    [18] 陈天宇, 冯夏庭, 杨成祥, 等.含气页岩渗透率的围压敏感性和各向异性研究[J].采矿与安全工程学报, 2014, 31(4):639-643. http://www.cnki.com.cn/Article/CJFDTotal-KSYL201404026.htm

    CHEN T Y, FENG X T, YANG C X, et al.Research on confining pressure sensitivity and anisotropy for gas shale permeability[J].Journal of Mining and Safety Engineering, 2014, 31(4):639-643. http://www.cnki.com.cn/Article/CJFDTotal-KSYL201404026.htm
    [19] 孙军昌, 杨正明, 郭和坤, 等.致密储层渗透率测试的稳态与非稳态法对比研究[J].岩土力学, 2013, 34(4):1009-1016. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201304017.htm

    SUN J C, YANG Z M, GUO H K, et al.Comparative study of tight reservoir permeability using steady-state and unsteady-state methods[J].Rock and Soil Mechanics, 2013, 34(4):1009-1016. http://www.cnki.com.cn/Article/CJFDTotal-YTLX201304017.htm
    [20] 张宏学. 页岩储层渗流-应力耦合模型及应用[D]. 徐州: 中国矿业大学, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D690167

    ZHANG H X. Seepage and stress coupling model for shale reservoir and its application[D]. Xuzhou: China University of Mining and Technology, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D690167
    [21] KWON O, KRONENBERG A K, GANGI A F, et al.Permeability of Wilcox shale and its effective pressure law[J].Journal of Geophysical Research:Solid Earth, 2001, 106(B9):19339-19353. doi: 10.1029/2001JB000273
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  7369
  • HTML全文浏览量:  3272
  • PDF下载量:  181
出版历程
  • 收稿日期:  2018-05-08
  • 修回日期:  2018-06-04

目录

    /

    返回文章
    返回