环形双锥罩聚能装药结构优化设计

刘宏杰 王伟力 苗润 吴世永

刘宏杰, 王伟力, 苗润, 吴世永. 环形双锥罩聚能装药结构优化设计[J]. 高压物理学报, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539
引用本文: 刘宏杰, 王伟力, 苗润, 吴世永. 环形双锥罩聚能装药结构优化设计[J]. 高压物理学报, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539
LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong. Optimum Design of Annular Double Done Shaped Charge Structure[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539
Citation: LIU Hongjie, WANG Weili, MIAO Run, WU Shiyong. Optimum Design of Annular Double Done Shaped Charge Structure[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065105. doi: 10.11858/gywlxb.20180539

环形双锥罩聚能装药结构优化设计

doi: 10.11858/gywlxb.20180539
详细信息
    作者简介:

    刘宏杰(1993-), 男, 硕士研究生, 主要从事弹药设计与目标毁伤评估研究. E-mail:1300202650@qq.com

    通讯作者:

    王伟力(1962—),男,教授,博士生导师,主要从事战斗部毁伤效应研究. E-mail:wwl85673@163.com

  • 中图分类号: TJ410.3

Optimum Design of Annular Double Done Shaped Charge Structure

  • 摘要: 在环形聚能装药结构中,单锥罩结构形成的射流中间有堆积现象,断裂前射流拉伸长度有限,而双锥罩射流兼顾了上锥小锥角形成高头部速度,下锥大锥角增大射流有效质量的优点,形成的射流更加细长,头部速度高且不易断裂。基于环形切割聚能装药战斗部,综合考虑上锥角大小、上锥罩占药型罩高的比例、药型罩的高度以及药型罩壁厚对射流侵彻能力的影响,并基于灰关联理论对双锥罩环形聚能装药的优化提供依据,通过数值仿真,研究表明:上下锥角对射流成型影响最大,通过比较,当上锥罩为34°、上锥占罩高比例为40%、药型罩高度为70 mm、药型罩壁厚为5 mm时,形成的射流头部速度高,且在空气中能够稳定飞行。相比单锥罩结构,双锥罩射流细长,在空气中飞行时间长,对靶板的侵深大于单锥罩射流。

     

  • 图  装药结构示意图

    Figure  1.  Schematic structure of shaped charge

    图  双锥罩射流成型参数随上锥角的变化曲线

    Figure  2.  Variation of double cone liner jet parameters with the upper cone angle

    图  双锥罩射流成型参数随壁厚的变化曲线

    Figure  3.  Variation of double cone liner jet parameters with the thickness of liner

    图  双锥罩射流成型参数随药型罩高度的变化曲线

    Figure  4.  Variation of double cone liner jet parameters with the height of the liner

    图  双锥罩射流成型参数随上锥罩占罩高比例的变化曲线

    Figure  5.  Variation of double cone liner jet parameters with the proportion of the upper cone cover

    图  双锥罩射流成型图

    Figure  6.  Forming of double cone liner jet

    图  单锥罩射流成型图

    Figure  7.  Forming of single cone liner jet

    图  两种射流侵彻靶板结果图

    Figure  8.  Result diagrams of two kinds of jet penetrating target plate

    表  1  B炸药计算参数

    Table  1.   Material performance parameters of composition B

    ρ/(g·cm-3) D/(m·s-1) pCJ/GPa A/GPa B/GPa R1 R2 ω E0/GPa V0
    1.713 7500 28.6 524.2 7.678 4.2 1.1 0.34 8.499 1.0
    下载: 导出CSV

    表  2  药型罩计算参数[13]

    Table  2.   Material performance parameters of liner[13]

    ρ/(g·cm-3) G0/GPa σ0/GPa Tm0/K C/(m·s-1) S1 A β n a
    8.96 47.7 0.12 1790 3940 1.49 63.5 36 0.45 1.5
    下载: 导出CSV

    表  3  30CrMnSiNi2A计算参数

    Table  3.   Material performance parameters of 30CrMnSiNi2A

    A/MPa B/MPa n C m Tm/K T0/K S1 γ0 α
    1280 420 0.30 0.03 1.00 1793 294 1.49 2.17 0.46
    下载: 导出CSV

    表  4  钢板计算参数[16]

    Table  4.   Material performance parameters of steel plate[16]

    ρ/(g·cm-3) E/GPa μ σs/MPa
    7.85 207 0.30 600
    下载: 导出CSV

    表  5  空气的计算参数

    Table  5.   Material performance parameters of air

    ρ/(mg·cm-3) C4 C5 E0/(MJ·m-3) vrel
    1.293 0.4 0.4 0.25 1.0
    下载: 导出CSV

    表  6  正交设计各因子水平值

    Table  6.   Orthogonal table

    Level α/(°) b1/mm H/mm h·H-1/%
    1 30 3.8 60 30
    2 36 4.6 70 50
    3 44 5.4 80 70
    下载: 导出CSV

    表  7  正交表设计与计算结果

    Table  7.   Orthogonal design and calculation result

    No. α/(°) b1/mm H/mm h·H-1/% V/(m·s-1) L/mm
    1 30 3.8 60 30 2807 25
    2 30 4.6 70 50 2469 70
    3 30 5.4 80 70 2488 70
    4 36 3.8 70 70 2297 45
    5 36 4.6 80 30 2804 70
    6 36 5.4 60 50 2871 90
    7 44 3.8 80 30 2834 40
    8 44 4.6 60 70 2470 55
    9 44 5.4 70 50 2508 70
    下载: 导出CSV

    表  8  无量纲化的参考序列与比较序列

    Table  8.   Dimensionless reference sequence and comparison sequence

    No. X1 X2 X3 X4 Y1 Y2
    1 1 1 1 1 1 1
    2 1 1.211 1.1667 1.6667 0.8796 2.8
    3 1 1.421 1.3333 2.3333 0.8864 2.8
    4 1.2 1 1.1667 2.3333 0.8183 1.8
    5 1.2 1.211 1.3333 1 1.0003 2.8
    6 1.2 1.421 1 1.6667 1.0228 3.6
    7 1.467 1 1.3333 1 1.0096 1.6
    8 1.467 1.211 1 2.3333 0.8799 2.2
    9 1.467 1.421 1.1667 1.6667 0.8935 2.8
    下载: 导出CSV

    表  9  灰关联度矩阵

    Table  9.   Grey correlation matrix

    Reference sequence Comparison sequence
    α b1 H h·H-1
    V1 0.528 0.475 0.554 0.373
    L 0.740 0.714 0.755 0.579
    下载: 导出CSV
  • [1] 陈闯, 王晓鸣, 李文彬, 等.双锥罩射流侵彻钢靶侵深计算模型[J].兵工学报, 2014, 35(5):604-612. http://d.old.wanfangdata.com.cn/Periodical/bgxb201405005

    CHEN C, WANG X M, LI W B, et al.Penetration depth calculation model for biconical liner jet penetrating into steel target[J]. Acta Armamentarii, 2014, 35(5):604-612. http://d.old.wanfangdata.com.cn/Periodical/bgxb201405005
    [2] 肖强强, 黄正祥, 祖旭东, 等.新结构药型罩射流对等效前舱的抗干扰研究[J].弹道学报, 2012, 24(1):47-51. doi: 10.3969/j.issn.1004-499X.2012.01.010

    XIAO Q Q, HUANG Z X, ZU X D, et al.Research of anti-interference capability by shaped charge jet into equivalent forward section for new-type line[J]. Journal of Ballistics, 2012, 24(1):47-51. doi: 10.3969/j.issn.1004-499X.2012.01.010
    [3] 李磊, 马宏昊, 沈兆武.基于正交设计方法的双锥罩结构优化设计[J].爆炸与冲击, 2013, 33(6):567-573. doi: 10.3969/j.issn.1001-1455.2013.06.002

    LI L, MA H H, SHEN Z W.Optimal design of biconical liner structure based on orthogonal design method[J]. Explosion and Shock Waves, 2013, 33(6):567-573. doi: 10.3969/j.issn.1001-1455.2013.06.002
    [4] 薛建伟, 纪春亮, 李国兰, 等.破甲战斗部药型罩结构设计与试验研究[C]//第15届全国战斗部与毁伤技术学术交流会论文集.北京, 2017: 416-419.

    XUE J W, JI C L, LI G L, et al.Structure design and experimental study on the liner of the armor piercing warhead[C]//Proceedings of the Fifteenth National Academic Conference on Warhead and Damage Technology.Beijing, 2017: 416-419.
    [5] 王远飞, 李国兰, 纪春亮, 等.双锥罩聚能战斗部技术研究[C]//第15届全国战斗部与毁伤技术学术交流会论文集.北京, 2017: 443-445.

    WANG Y F, LI G L, JI C L, et al.Research on the dual cone liner warhead[C]//Proceedings of the Fifteenth National Academic Conference on Warhead and Damage Technology.Beijing, 2017: 443-445.
    [6] 傅磊.鱼雷新型串联战斗部对舰艇典型舱段结构的毁伤效应研究[D].烟台: 海军航空工程学院, 2015: 50-53.

    FU L.Damage effect of new tandem warhead-torpedo on typical cabin structure of naval ships[D]. Yantai: Naval Aeronautical Engineering Institute, 2015: 50-53.
    [7] 尚晓江.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2006:140-143.

    SHANG X J.ANSYS/LS-DYNA dynamic analysis method and engineering example[M]. Beijing:China Water Conservancy and Hydropower Press, 2006:140-143.
    [8] 王成, 付晓磊, 宁建国.起爆方式对聚能射流性能影响的数值分析[J].北京理工大学学报, 2006, 26(5):401-404. doi: 10.3969/j.issn.1001-0645.2006.05.006

    WANG C, FU X L, NING J G.Numerical simulation of shaped charge jet formation under different ways of initiation[J]. Transactions of Beijing Institute of Technology, 2006, 26(5):401-404. doi: 10.3969/j.issn.1001-0645.2006.05.006
    [9] 汪文革, 杨世军, 韩永要, 等.基于ANSYS/LS-DYNA的聚能射流侵彻装甲钢的有限元分析[J].兵工自动化, 2008, 27(3):39-41. doi: 10.3969/j.issn.1006-1576.2008.03.015

    WANG W G, YANG S J, HAN Y Y, et al.Finite element analysis of shaped charge jet penetrating into target based on ANSYS/LS-DYNA[J]. Ordnance Industry Automation, 2008, 27(3):39-41. doi: 10.3969/j.issn.1006-1576.2008.03.015
    [10] TOGAMI T C, BAKER W E, FORRESTAL M J.A split Hopkinson bar technique to evaluate the performance of accelerometers[J]. Journal of Applied Mechanics, 1995, 63(2):353-356. http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1996JAM....63..353T&db_key=PHY&link_type=ABSTRACT
    [11] FRANZEN R R, SCHNEIDEWIND P N.Observation concerning the penetration mechanics of tubular hypervelocity penetration[J]. International Journal of Impact Engineering, 2001, 11(3):289-303. http://www.sciencedirect.com/science/article/pii/0734743X9190040M
    [12] WASMUND T L.New model to evaluate weapon effects and platform vulnerability:AJEM[J]. WSTIAC Newsletter, 2001, 2(4):1-11. http://wstiac.alionscience.com/pdf/Vol2Num4.pdf
    [13] LEE W H, PAINTER J W.Material void-opening computation using particle method[J]. International Journal of Impact Engineering, 1999, 22(1):1-22. doi: 10.1016/S0734-743X(98)00041-4
    [14] 蒋志刚, 曾首义, 周建平.刚性尖头弹垂直撞击金属厚靶板极限速度分析[J].固体力学学报, 2004, 25(3):360-364. doi: 10.3969/j.issn.0254-7805.2004.03.021

    JIANG Z G, ZENG S Y, ZHOU J P.Analysis on ballistic limit of metallic targets struck by rigid sarp-nosed projectiles[J]. Acta Mechanica Solida Sinica, 2004, 25(3):360-364. doi: 10.3969/j.issn.0254-7805.2004.03.021
    [15] LEE Y W, WIERZBICKI T.Fracture prediction of thin plates under localized impulsive loading (Part Ⅱ):discing and petalling[J]. International Journal of Impact Engineering, 2005, 31(10):1277-1308. doi: 10.1016/j.ijimpeng.2004.07.011
    [16] 李永胜.反舰导弹串级战斗部前级环形切割器的优化设计[D].烟台: 海军航空工程学院, 2011: 42-45.

    LI Y S.Optimization design of the front annular cutter of the anti ship missile cascade warhead[D]. Yantai: Naval Aeronautical Engineering Institute, 2011: 42-45.
    [17] 刘思峰.灰色系统理论及其应用[M].第5版.北京:科学出版社, 2010:45-48.

    LIU S F.Grey system theory and application[M]. 5th Ed.Beijing:Science Press, 2010:45-48.
    [18] 李永胜, 王伟力, 刘晓红, 等.串联战斗部前级的环形切割器优化设计[J].工程爆破, 2011, 17(4):1-4. doi: 10.3969/j.issn.1006-7051.2011.04.001

    LI Y S, WANG W L, LIU X H, et al.Design optimization on annular cutter in the front of tandem warhead[J]. Engineering Blasting, 2011, 17(4):1-4. doi: 10.3969/j.issn.1006-7051.2011.04.001
    [19] WANG C, YUN S R, HUANG F L, et al.Investigating jet appearance in different background lights with high-speed frame photography[J]. Transactions of Beijing Institute of Technology, 2002, 11(2):113-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb-e200202001
    [20] 王成, 恽寿榕, 黄风雷.W型聚能装药射流形成及侵彻的实验和数值仿真研究[J].兵工学报, 2003, 24(4):451-454. doi: 10.3321/j.issn:1000-1093.2003.04.005

    WANG C, YUN S R, HUANG F L.An experimental study and numerical simulation on annular jet formation and penetration[J]. Acta Armamentarii, 2003, 24(4):451-454. doi: 10.3321/j.issn:1000-1093.2003.04.005
  • 加载中
图(8) / 表(9)
计量
  • 文章访问数:  7574
  • HTML全文浏览量:  2507
  • PDF下载量:  21
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-05-30

目录

    /

    返回文章
    返回