基于电流密度的分段计算电爆炸模型研究

于红新 冉汉政 杜涛 丰伟

于红新, 冉汉政, 杜涛, 丰伟. 基于电流密度的分段计算电爆炸模型研究[J]. 高压物理学报, 2018, 32(6): 062401. doi: 10.11858/gywlxb.20180537
引用本文: 于红新, 冉汉政, 杜涛, 丰伟. 基于电流密度的分段计算电爆炸模型研究[J]. 高压物理学报, 2018, 32(6): 062401. doi: 10.11858/gywlxb.20180537
YU Hongxin, RAN Hanzheng, DU Tao, FENG Wei. Electrical Explosion Model Based on Current Density in Piecewise Calculation[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 062401. doi: 10.11858/gywlxb.20180537
Citation: YU Hongxin, RAN Hanzheng, DU Tao, FENG Wei. Electrical Explosion Model Based on Current Density in Piecewise Calculation[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 062401. doi: 10.11858/gywlxb.20180537

基于电流密度的分段计算电爆炸模型研究

doi: 10.11858/gywlxb.20180537
基金项目: 

中国工程物理研究院电子工程研究所创新发展基金 S20160801

详细信息
    作者简介:

    于红新(1988-), 男, 硕士, 研究实习员, 主要从事脉冲功率技术研究. E-mail:yuhongxin1221@126.com

  • 中图分类号: TJ450.2;TM133

Electrical Explosion Model Based on Current Density in Piecewise Calculation

  • 摘要: 瞬态电阻是爆炸丝在电爆炸过程中最重要的参数之一,准确描述爆炸丝电阻的非线性时变特性是电爆炸仿真的关键,决定了电爆炸过程的仿真精度。为解决传统仿真模型精度差的问题,提出了根据电流密度采用分段计算的方法校正传统电阻率-比作用量关系,建立基于电流密度的分段计算电爆炸仿真模型。结果表明,在大脉冲电流条件下,基于电流密度的分段计算电爆炸模型精度较传统的仿真模型精度明显提高,可用于高精度的爆炸丝电爆炸过程研究。

     

  • 图  RLC放电电路

    Figure  1.  Discharge circuit containing R, L and C parameters

    图  典型的RLC放电电流波形

    Figure  2.  Typical RLC discharge current waveform

    图  典型电阻率-比作用量曲线

    Figure  3.  Typical resistivity-specific action curves

    图  不同电流密度下电阻率-比作用量曲线

    Figure  4.  Resistivity-specific action curves at different current densities

    图  电阻率曲线(1 TA/m2)

    Figure  5.  Resistivity curve(1 TA/m2)

    图  分段的电阻率-比作用量曲线

    Figure  6.  Resistivity-specific action curves at different current densities

    图  Saber仿真模型

    Figure  7.  Simulation model in Saber

    图  实验示意图

    Figure  8.  Schematic diagram of experimental setup

    图  短路实验电流波形

    Figure  9.  Current waveform of short-circuit discharge experiment

    图  10  短路仿真模型

    Figure  10.  Simulation model of short-circuit

    图  11  爆炸丝结构示意图

    Figure  11.  Schematic diagram of exploding wire structure

    图  12  电流波形

    Figure  12.  Current waveform

    图  13  控制电流曲线

    Figure  13.  Curve of control current

    图  14  仿真与实验电流波形

    Figure  14.  Simulation and experimental current waveforms

    表  1  爆炸丝单点起爆实验与仿真结果

    Table  1.   Experiment and simulation results of explosive wire with single point initiation

    State Peak current/kA Error/% Time of peak current/μs Error/% Burst current/kA Error/% Burst time/μs Error/%
    Experiment 2.088 0.638 1.315 0.251
    Simulation 1 2.066 0.95 0.623 2.35 1.309 0.76 0.253 0.80
    Simulation 2 2.138 2.39 0.594 6.90 1.439 9.42 0.243 3.19
    Simulation 3 1.936 7.18 0.712 11.60 1.298 1.29 0.225 10.36
    Simulation 4 1.600 23.37 0.532 16.61 1.263 3.95 0.206 17.93
    下载: 导出CSV
  • [1] TUCKER T J.Behavior of exploding glod wires[J].Journal of Applied Physics, 1961, 32(10):1894-1900. doi: 10.1063/1.1728259
    [2] TUCKER T J, STANTON P L.Electrical gurney energy: a new concept in modeling of energy transfer from electrically exploded conductors: SAND-75-0244[R].Albuquerque, NM: Sandia National Laboratories, 1975.
    [3] 杨汉武, 钟辉煌.PSpice模型用于电爆炸丝的数值模拟[J].国防科技大学学报, 2000, 22(增刊):38-42. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb2000Z1011

    YANG H W, ZHONG H H.Numerical simulation of electrical exploding wires via PSpice models[J].Journal of National University of Defense Technology, 2000, 22(Suppl):38-42. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb2000Z1011
    [4] 杨集, 杜涛, 赵翔, 等.基于电容放电单元的爆炸丝起爆特性数值分析[J].太赫兹科学与电子信息学报, 2014, 12(3):461-465. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201403029

    YANG J, DU T, ZHAO X, et al.Numerical analysis of exploding wire initiation characteristic based on capacitor discharge unit[J].Journal of Terahertz Science and Electronic Information Technology, 2014, 12(3):461-465. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201403029
    [5] LEE R S.Fireset: UCID-21322[R].Livermore, CA: Lawrence Livermore National Laboratory, 1988.
    [6] FURNBERG C M.Computer modeling of detonators[C]//Proceedings of the 37th Midwest Symposium on Circuits and Systems.Piscataway, NJ: Institute of Electrical and Electronics Engineers, 1994, 1: 646-649.
    [7] IVANENKOV G V, STEPNIEWSKI W.Three-temperature model for the dynamics of a plasma produced by exploding metal wires[J].Plasma Physics Reports, 2000, 26(1):21-32. doi: 10.1134/1.952818
    [8] 王刚华, 胡熙静.单丝Z箍缩的一维单温辐射磁流体力学计算[J].高压物理学报, 2002, 16(1):57-60. doi: 10.3969/j.issn.1000-5773.2002.01.009

    WANG G H, HU X J.One-dimensional simulations of single temperature radiative magnetic field dynamics for liner implosion experiments[J].Chinese Journal of High Pressure Physics, 2002, 16(1):57-60. doi: 10.3969/j.issn.1000-5773.2002.01.009
    [9] 张振涛, 汤铁钢, 王健, 等.爆炸丝起爆系统研制[J].高能量密度物理, 2013, 3(1):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201403053.htm

    ZHANG Z T, TANG T G, WANG J, et al.Development of exploding wire initiation system[J].High Energy Density Physics, 2013, 3(1):35-40. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201403053.htm
    [10] TUCKER T J, TOTH R P.EBW1: a computer code for the prediction of the behavior of electrical circuit containing exploding wire elements: SAND-75-0041[R].Albuquerque, NM: Sandia National Laboratories, 1975.
    [11] YING G F, LI X W, JIA S L.Electrical characteristics of microsecond electrical explosion of Cu wires in air under various parameters[J].Transactions on Plasma Science, 2018, 46(4):972-981. doi: 10.1109/TPS.2018.2805351
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  6009
  • HTML全文浏览量:  2743
  • PDF下载量:  15
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-31

目录

    /

    返回文章
    返回