舱室模型内爆炸载荷下预制孔板的变形规律

赵鹏铎 王庆 张磊 张鹏 黄松 徐豫新

赵鹏铎, 王庆, 张磊, 张鹏, 黄松, 徐豫新. 舱室模型内爆炸载荷下预制孔板的变形规律[J]. 高压物理学报, 2018, 32(6): 065110. doi: 10.11858/gywlxb.20180531
引用本文: 赵鹏铎, 王庆, 张磊, 张鹏, 黄松, 徐豫新. 舱室模型内爆炸载荷下预制孔板的变形规律[J]. 高压物理学报, 2018, 32(6): 065110. doi: 10.11858/gywlxb.20180531
ZHAO Pengduo, WANG Qing, ZHANG Lei, ZHANG Peng, HUANG Song, XU Yuxin. Deformation of Plates with Pre-formed Holes under Internal Blast Loading in Cabin Model[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065110. doi: 10.11858/gywlxb.20180531
Citation: ZHAO Pengduo, WANG Qing, ZHANG Lei, ZHANG Peng, HUANG Song, XU Yuxin. Deformation of Plates with Pre-formed Holes under Internal Blast Loading in Cabin Model[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 065110. doi: 10.11858/gywlxb.20180531

舱室模型内爆炸载荷下预制孔板的变形规律

doi: 10.11858/gywlxb.20180531
基金项目: 

国家自然科学基金 11302259

详细信息
    作者简介:

    赵鹏铎(1983-), 男, 博士, 工程师, 主要从事舰船爆炸毁伤与防护研究. E-mail:zhaopengduo@163.com

  • 中图分类号: O521.9;O383.3

Deformation of Plates with Pre-formed Holes under Internal Blast Loading in Cabin Model

  • 摘要: 为研究舱室模型内爆炸载荷下预制孔板的动态响应,实验验证舱室模型内偏置孔板和均匀孔板的变形规律,并与无孔板的变形规律对比,同时建立了一种模拟舱室的仿真模型,进行内爆炸载荷下的数值计算,分析典型测点内爆炸冲击波的分布,研究预制孔板的挠度变形规律。结果表明:预制孔板的局部强度减弱对挠度变形的增益大于泄爆效应的影响,内爆冲击波在舱室模型内部存在反射和汇聚现象,并在毫秒量级后期存在准静态特性,模拟结果与实验结果一致,同时预制孔板不同区域减薄率存在差异。研究结果可以为舱内爆炸冲击波-破片耦合损伤作用的机理分析提供依据。

     

  • 图  预制孔板设计流程

    Figure  1.  Design flow of pre-formed holes plate

    图  实验模型

    Figure  2.  Experimental setup

    图  目标板变形效果

    Figure  3.  Deformation of target plates

    图  目标板侧视图

    Figure  4.  Side view of target plates

    图  减薄率测试区域划分

    Figure  5.  Area division of thinning rate tests

    图  各区域减薄率

    Figure  6.  Thinning rate in different areas

    图  计算模型

    Figure  7.  Numerical model

    图  预制孔板计算模型

    Figure  8.  Numerical model of preformed holes plate

    图  内爆冲击波传播云图

    Figure  9.  Contour of internal blast shock wave propagation

    图  10  仿真测点上的冲击波压力时程曲线

    Figure  10.  Shock wave overpressure-time history curves at simulated gauge points

    图  11  目标板变形和最大挠度

    Figure  11.  Target plates deformation and maximum deflection

    图  12  三种目标板中点位移曲线

    Figure  12.  Midpoint displacement-time curve of three target plates

    表  1  实验最大变形挠度

    Table  1.   Experimental maximum deformation deflection

    Target plate Maximum deformation deflection/mm
    Measured value Deviation Correction value
    1-1 85.6 -2.1 83.5
    1-2 86.5 -2.1 84.4
    2-1 88.8 -2.1 86.7
    2-2 92.2 -4.5 87.7
    3-1 101.5 -10.3 91.2
    3-2 109.8 -15.8 94.0
    下载: 导出CSV

    表  2  减薄率统计

    Table  2.   Thinning rate statistics

    Target plate Target plate actual thickness/mm Mid point thickness/mm The average of Mid area/mm The average of edge area/mm
    1-1 1.76 1.37 1.56 1.62
    1-2 1.83 1.37 1.68 1.75
    3-1 1.84 1.50 1.56 1.68
    3-2 1.77 1.31 1.56 1.68
    Target plate Target plate actual thickness/ mm Mid point thickness/ mm The average of Mid area 1/mm The average of Mid area 2/mm The average of edge area 1/mm The average of edge area 2/mm
    2-1 1.82 1.43 1.56 1.56 1.72 1.56
    2-2 1.81 1.56 1.62 1.56 1.81 1.62
    下载: 导出CSV

    表  3  Q235钢参数

    Table  3.   Parameters of Q235 steel

    ρ/(kg·m-3) EOS Bulk modulus/ GPa Ref.temperature/K Specific heat/ (J·kg-1·K-1)
    7 830 Linear 175 293 477
    下载: 导出CSV

    表  4  Cowper-Symonds强度模型部分参数

    Table  4.   Some parameters of Cowper-Symonds strength model

    Shear modulus/GPa Yield stress/MPa n D/s-1 q
    80 235 0 40 5
    下载: 导出CSV

    表  5  测点冲量对比

    Table  5.   Impulse comparison between gauge points

    Gauge Total impulse/(Pa·s)
    in 1 ms in 2 ms in 6 ms
    1 996.10 1 787.58 5 143.99
    2 921.76 1 707.36 5 052.09
    3 742.53 1 500.95 4 719.41
    下载: 导出CSV

    表  6  挠度对比与误差

    Table  6.   Deflection comparison and deviation

    Target plate Maximum deflection/mm deviation/%
    Exp. Sim.
    Non preformed hole plate 83.95 72.05 -14.18
    Offset preformed holes plate 87.20 74.69 -14.35
    Uniform preformed holes plate 92.60 79.16 -14.51
    下载: 导出CSV
  • [1] RUSHTON N, SCHLEYER G K, CLAYTON A M, et al.Internal explosive loading of steel pipes[J].Thin-Walled Structuers, 2008, 46(7/8/9):870-877. http://www.sciencedirect.com/science/article/pii/S0263823108000359
    [2] 柏小娜, 李向东, 杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J].爆破器材, 2015, 44(3):22-26. doi: 10.3969/j.issn.1001-8352.2015.03.005

    BAI X N, LI X D, YANG Y D.Calculation model and the distribution of wave pressure under internal explosion in closed space[J].Explosive Materials, 2015, 44(3):22-26. doi: 10.3969/j.issn.1001-8352.2015.03.005
    [3] FELDGUN V R, KOCHETKOV A V, KARINSKI Y S, et al.Internal blast loading in a buried lined tunnel[J].International Journal of Impact Engineering, 2007, 35(3):172-183. http://www.sciencedirect.com/science/article/pii/S0734743X07000073
    [4] 侯海量, 朱锡, 李伟, 等.舱内爆炸冲击载荷特性实验研究[J].船舶力学, 2010, 14(8):901-907. doi: 10.3969/j.issn.1007-7294.2010.08.011

    HOU H L, ZHU X, LI W, et al.Experimental studies on characteristics of blast loading when exploded inside ship cabin[J].Journal of Ship Mechanics, 2010, 14(8):901-907. doi: 10.3969/j.issn.1007-7294.2010.08.011
    [5] 孔祥韶.爆炸载荷及复合多层防护结构响应特性研究.武汉:武汉理工大学, 2013:52-56. http://d.old.wanfangdata.com.cn/Thesis/Y2364126

    KONG X S.Research on the blast loadings and the response of multi-laver protective structure.Wuhan:Wuhan University of Technology, 2013:52-56. http://d.old.wanfangdata.com.cn/Thesis/Y2364126
    [6] AUNE V, VALSAMOS G, CASADEI F, et al.On the dynamic response of blast-loaded steel plates with and without pre-formed holes[J].International Journal of Impact Engineering, 2017, 108(4):27-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d18ff3d323b85b0a702c9928f709a9ba
    [7] RAKVÅG K G, UNDERWOOD N J, SCHLEYER G K, et al.Transient pressure loading of clamped metallic plates with pre-formed holes[J].International Journal of Impact Engineering, 2013, 53(3):44-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a07446669f032aa99fcdc47aaec69b56
    [8] 蒋建伟, 侯俊亮, 门建兵, 等.爆炸冲击波作用下预制孔靶板塑性变形规律的研究[J].高压物理学报, 2014, 28(6):723-728. http://www.gywlxb.cn/CN/abstract/abstract1768.shtml

    JIANG J W, HOU J L, MEN J B, et al.Study on deformation of perforated plates under blast loading[J].Chinese Journal of High Pressure Physics, 2014, 28(6):723-728. http://www.gywlxb.cn/CN/abstract/abstract1768.shtml
    [9] 黄寅生.炸药理论[M].北京:北京理工大学出版社, 2016.

    HUANG Y S.Explosive theory[M].Beijing:Beijing Institute of Technology Press, 2016.
    [10] 侯海量, 朱锡, 梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击, 2007, 27(2):151-158. doi: 10.3321/j.issn:1001-1455.2007.02.010

    HOU H L, ZHU X, MEI Z Y.Study on the blast load and failure mode of ship structure subject to internal explosion[J].Explosion and Shock Waves, 2007, 27(2):151-158. doi: 10.3321/j.issn:1001-1455.2007.02.010
    [11] 刘土光, 胡要武, 郑际嘉.固支加筋方板在爆炸载荷作用下的刚塑性动力响应分析[J].爆炸与冲击, 1994, 14(1):55-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400166734

    LIU T G, HU Y W, ZHENG J J.Dynamic reeponse analysis of rigid perfectly plastic calmped square plates with stiffener subjected to blast loading[J].Explosion and Shock Waves, 1994, 14(1):55-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400166734
    [12] 汪维, 张舵, 卢芳云, 等.大当量TNT装药爆轰的远场数值模拟及超压预测[J].弹箭与制导学报, 2010, 30(1):127-130. doi: 10.3969/j.issn.1673-9728.2010.01.039

    WANG W, ZHANG D, LU F Y, et al.Simulation of thousands kilograms of TNT explosion shock wave in air at distance far away and forecast of the peak overpressure[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(1):127-130. doi: 10.3969/j.issn.1673-9728.2010.01.039
    [13] 周杰, 陶钢, 潘宝清, 等.AUTO-DYN模拟炸药爆炸问题的分析[J].火炸药学报, 2012, 35(5):33-37. doi: 10.3969/j.issn.1007-7812.2012.05.008

    ZHOU J, TAO G, PAN B Q, et al.Analysis of the problems of simulating the explosive blast by AUTO-DYN[J].Chinese Journal of Explosives & Propellants, 2012, 35(5):33-37. doi: 10.3969/j.issn.1007-7812.2012.05.008
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  8044
  • HTML全文浏览量:  2834
  • PDF下载量:  19
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-04-10

目录

    /

    返回文章
    返回