不同形状DU合金破片侵彻性能研究

吴凡达 赵捍东 邵先锋 马姗姗 刘胜 张程建

吴凡达, 赵捍东, 邵先锋, 马姗姗, 刘胜, 张程建. 不同形状DU合金破片侵彻性能研究[J]. 高压物理学报, 2018, 32(5): 055103. doi: 10.11858/gywlxb.20180504
引用本文: 吴凡达, 赵捍东, 邵先锋, 马姗姗, 刘胜, 张程建. 不同形状DU合金破片侵彻性能研究[J]. 高压物理学报, 2018, 32(5): 055103. doi: 10.11858/gywlxb.20180504
WU Fanda, ZHAO Handong, SHAO Xianfeng, MA Shanshan, LIU Sheng, ZHANG Chengjian. Study on the Penetration Performance of Different Shaped DU Alloy[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055103. doi: 10.11858/gywlxb.20180504
Citation: WU Fanda, ZHAO Handong, SHAO Xianfeng, MA Shanshan, LIU Sheng, ZHANG Chengjian. Study on the Penetration Performance of Different Shaped DU Alloy[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055103. doi: 10.11858/gywlxb.20180504

不同形状DU合金破片侵彻性能研究

doi: 10.11858/gywlxb.20180504
详细信息
    作者简介:

    吴凡达(1991-), 男, 硕士研究生, 主要从事战斗部毁伤技术研究.E-mail:995038735@qq.com

    通讯作者:

    赵捍东(1960-), 男, 博士, 教授, 硕士生导师, 主要从事战斗部毁伤技术研究.E-mail:hd_zhao@nuc.edu.cn

  • 中图分类号: TJ410.3

Study on the Penetration Performance of Different Shaped DU Alloy

  • 摘要: 为研究不同形状贫铀(Depleted Uranium,DU)合金破片的侵彻性能,首先进行了终点弹道实验,得到了圆柱形DU破片侵彻20 mm厚Q235B钢靶的终点弹道相关参数。然后通过AUTODYN软件进行了相应终点弹道仿真模拟,结果表明,仿真与实验结果基本一致,验证了仿真结果的正确性。随后又在原仿真的基础上增加了圆柱形、立方形和球形破片以不同着靶姿态侵彻靶板的数值仿真。结果表明,在相同质量和相同初速的条件下,棱角着靶姿态的立方体、楞线着靶姿态的立方体和球形破片的侵彻能力依次减弱,圆柱形和平行着靶姿态的立方形破片侵彻能力最差。若均以垂直姿态着靶,圆柱形破片侵彻能力要强于立方体,以棱角或楞线着靶姿态着靶的立方体具有更强的侵彻能力。

     

  • 图  破片

    Figure  1.  Actual fragment

    图  靶板破坏情况及残余破片形状

    Figure  2.  Target damage and shape of residual fragment

    图  网格结构模型

    Figure  3.  Grid structure mode

    图  破片侵彻过程数值仿真及速度曲线

    Figure  4.  Numerical simulation and velocity curve of fragment penetration process

    图  靶板破坏情况和圆柱形残余破片实物与仿真结果对比

    Figure  5.  Comparison of physical and simulation results of the failure of target plate and cylindrical residual fragment

    图  各组网格结构模型

    Figure  6.  Grid structure model of each group

    图  A组破片侵彻过程数值仿真过程及速度曲线

    Figure  7.  Numerical simulation and velocity curve of fragment penetration process in A group

    图  B组破片侵彻过程数值仿真及速度曲线

    Figure  8.  Numerical simulation and velocity curve of fragment penetration process in B group

    图  C组破片侵彻过程数值仿真过程及速度曲线

    Figure  9.  Numerical simulation and velocity curve of fragment penetration process in C group

    图  10  D组破片侵彻过程数值仿真过程及速度曲线

    Figure  10.  Numerical simulation and velocity curve of fragment penetration process in D group

    图  11  E组破片侵彻过程数值仿真过程及速度曲线

    Figure  11.  Numerical simulation and velocity curve of fragment penetration process in E group

    图  12  各组残余破片形状对比

    Figure  12.  Comparison of the shape of residual fragments in each group

    表  1  破片侵彻靶板实验方案

    Table  1.   Scheme for experiment of target penetration by broken pieces

    ExperimentFragment
    material
    ρ/(g·cm-3)Fragment
    size/mm
    Fragment
    quality/g
    Target
    material
    Target
    size/mm
    Maximum
    charge/g
    1DU18.47∅9 ×910.5Q235B100×100×2014
    下载: 导出CSV

    表  2  破片侵彻靶板实验结果

    Table  2.   Summarized data of target experiment

    ExperimentFragment
    quality/g
    Charge
    quality/g
    Initial velocity/
    (m·s-1)
    Remaining
    velocity/(m·s-1)
    Frontal
    aperture/mm
    Back
    aperture/mm
    Pentration
    depth/mm
    110.5141 2952341510Breakthrough
    下载: 导出CSV

    表  3  材料的本构参数和基本性质[6-9]

    Table  3.   Constitutive parameters and basic properties of materials[6-9]

    MaterialYield stressBnC${{\dot \varepsilon }_0}$Tm/KTr/KG/GPaρ/(kg·m-3)
    DU alloy1 079.01 1200.250.0071.001 47329383.318 620
    Q235B244.84000.360.0390.551 79530077.07 800
    下载: 导出CSV

    表  4  状态方程主要相关参数

    Table  4.   Main parameters of equation of state

    MaterialGrüneisen parameterC1S1
    DU alloy2.322 5901.56
    Q235B steel1.934 0701.49
    下载: 导出CSV

    表  5  材料的失效参数[6-10]

    Table  5.   Failure parameters of the material[6-10]

    MaterialC1C2C3C4C5
    DU alloy1.80.33-1.50.0210
    Q235B steel-43.40844.608-0.0160.0150.046
    下载: 导出CSV

    表  6  破片侵彻靶板实验及仿真

    Table  6.   Experiment and simulation of target penetration by broken pieces

    MethodFragment
    quality/g
    Initial velocity/
    (m·s-1)
    Residual velocity/
    (m·s-1)
    Frontal
    aperture/mm
    Back
    aperture/mm
    Pentration
    depth/mm
    Experiment10.51 2952341510Breakthrough
    Simulation10.51 2952501611Breakthrough
    下载: 导出CSV

    表  7  仿真模型设计参数

    Table  7.   Simulation model design parameters

    GroupFragment
    material
    Fragment size
    and shape/mm
    Target
    material
    Target
    size/mm
    Target
    attitude
    A
    B
    C
    D
    E
    DU
    DU
    DU
    DU
    DU
    ∅9×9 cylindrical
    8.3×8.3×8.3 cube
    8.3×8.3×8.3 cube
    8.3×8.3×8.3 cube
    ∅10.3 spherical
    Q235B
    Q235B
    Q235B
    Q235B
    Q235B
    60×60×20
    60×60×20
    60×60×20
    60×60×20
    60×60×20
    Parallel
    Vertical
    Arbitrary corrugated line
    Arbitrary angle
    Arbitrary
    下载: 导出CSV

    表  8  各组残余破片相关参数

    Table  8.   Residual fragment correlation parameters of each group

    GroupResidual velocity/
    (m·s-1)
    Residual
    mass/g
    Mass
    loss/%
    Initial2506.1542.0
    A3006.0936.8
    B2705.7944.9
    C4309.1612.8
    D5009.3610.9
    E4007.6121.5
    下载: 导出CSV
  • [1] ECKELMEYER K H. Diffusional transformations, strengthening mechanisms, and mechanical properties of uranium alloys: SAND 82-0524[R]. Albuquerque, NM: Sandia National Laboratories, 1982.
    [2] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983(11): 541-547.
    [3] 何立峰, 肖大武, 巫祥超, 等.U-Ti合金变形及失效机理的SHPB研究[J].稀有金属材料与工程, 2013, 42(7):1382-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201307014

    HE L F, XIAO D W, WU X C, et al.Deformation and failure mechanism of U-Ti alloy by SHPB[J].Rare Metal Materials and Engineering, 2013, 42(7):1382-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201307014
    [4] 岳明凯, 曲家惠.穿甲弹弹芯材料的发展趋势研究[J].飞航导弹, 2010(12):67-70. http://d.old.wanfangdata.com.cn/Periodical/fhdd201012015

    YUE M K, QU J H.Research on the development trend of piercing projectile core material[J].Aerodynamic Missile Journal, 2010(12):67-70. http://d.old.wanfangdata.com.cn/Periodical/fhdd201012015
    [5] 石杰, 王小英, 赵雅文, 等.热处理对铌合金变形局域化的影响[J].稀有金属材料与工程, 2014(11):2836-2840. http://www.cqvip.com/QK/92850X/201411/663144330.html

    SHI J, WANG X Y, ZHAO Y W, et al.Effects of heat treatment on microstructure and dynamic shear localization of U-Nb alloy[J].Rare Metal Materials and Engineering, 2014, 42(11):2836-2840. http://www.cqvip.com/QK/92850X/201411/663144330.html
    [6] 沈春霞, 王百荣, 王斌, 等. 贫铀弹撞击气溶胶量仿真计算[C]//第十四届全国核电子学与核探测技术学术年会论文集. 北京: 中国核学会, 2008: 861-864.

    SHEN C X, WANG B R, WANG B, et al. Depletion of depleted uranium bullets by aerosol mass simulation[C]//Proceedings of the 14th National Conference on Nuclear Electronics and Nuclear Detection Technology. Beijing: CNS, 2008: 861-864.
    [7] 楼建峰, 王政, 洪涛, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011

    LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J].Chinese Journal of High Pressure Physics, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011
    [8] 陈刚, 陈小伟, 陈忠富, 等.A3钢钝头弹撞击45钢板破坏模式的数值分析[J].爆炸与冲击, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08

    CHEN G, CHEN X W, CHEN Z F, et al.Numerical analysis of failure modes of 45 steel by A3 steel blunt bullet[J].Explosion and Shock Waves, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08
    [9] 林莉, 支旭东, 范峰, 等.Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击, 2014, 33(9):153-158. http://www.docin.com/p-1544408298.html

    LIN L, ZHI X D, FAN F, et al.Determination of parameters of Johnson-Cook models of Q235B steel[J].Journal of Vibration and Shock, 2014, 33(9):153-158. http://www.docin.com/p-1544408298.html
    [10] 陈小伟, 张方举, 梁斌, 等.A3钢钝头弹撞击45钢板破坏模式的试验研究[J].爆炸与冲击, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09

    CHEN X W, ZHANG F J, LIANG B, et al.Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates[J].Explosion and Shock Waves, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  7763
  • HTML全文浏览量:  4708
  • PDF下载量:  22
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-02-13

目录

    /

    返回文章
    返回