原位测量金刚石压砧在高压下的杯型形变

刘盛刚 敬秋民 陶天炯 马鹤立 王翔 翁继东 李泽仁

刘盛刚, 敬秋民, 陶天炯, 马鹤立, 王翔, 翁继东, 李泽仁. 原位测量金刚石压砧在高压下的杯型形变[J]. 高压物理学报, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548
引用本文: 刘盛刚, 敬秋民, 陶天炯, 马鹤立, 王翔, 翁继东, 李泽仁. 原位测量金刚石压砧在高压下的杯型形变[J]. 高压物理学报, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548
LIU Shenggang, JING Qiumin, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong, LI Zeren. In Situ Measurement of the Cupping Deformation of Diamond Anvil under High Pressures[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548
Citation: LIU Shenggang, JING Qiumin, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong, LI Zeren. In Situ Measurement of the Cupping Deformation of Diamond Anvil under High Pressures[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548

原位测量金刚石压砧在高压下的杯型形变

doi: 10.11858/gywlxb.20170548
基金项目: 

国家自然科学基金 11604313

中国工程物理研究院科学技术发展基金 2013B040162

详细信息
    作者简介:

    刘盛刚(1983—), 男,硕士,副研究员,主要从事光学测试技术研究.E-mail:liushenggangpla@126.com

  • 中图分类号: O521.3; TN247

In Situ Measurement of the Cupping Deformation of Diamond Anvil under High Pressures

  • 摘要: 基于白光频域干涉的基本原理,提出了一种可实现高压下金刚石压砧杯型形变原位测量的方法。简单介绍了利用频域干涉技术测量金刚石压砧在高压下的杯型形变的基本原理,并开展了实验研究,实验最高压力达到42.1GPa。实验结果显示,金刚石压砧的杯型形变与压力呈线性关系,最大值达到11.1μm,从实验上证实了最近的有限元数值模拟结果。

     

  • 图  金刚石压砧杯型形变原位测量示意

    ((a)实验光路; (b)参考光和信号光来源示意)

    Figure  1.  Schematics of in situ measuring the cupping deformation of diamond anvil

    ((a)Experimental light path; (b)Origins of reference and signal beams)

    图  典型频域干涉信号(42.1GPa)

    Figure  2.  Typical frequency domain interferometry signals at 42.1GPa

    图  中心与边缘区域对应信号的傅里叶变换频谱

    Figure  3.  FFT spectra of signals at the center and edge of the anvil

    图  金刚石压砧在高压下的形变分布

    Figure  4.  Deformation profiles of diamond anvil along the radial direction under high pressures

    图  金刚石压砧在不同压力下的杯型形变

    Figure  5.  Cupping deformation of diamond anvils under high pressures

    表  1  线性拟合结果

    Table  1.   Linear fitting results

    Fitting data Intercept/
    μm
    Standard error ofintercept Slope/
    (μm·GPa-1)
    Standard error ofslope R2
    FEM calculation 0.1268 0.1058 0.2404 0.0039 0.9961
    Experimental data 0.4766 0.3846 0.2350 0.0136 0.9772
    下载: 导出CSV
  • [1] HEMLEY R J, MAO H K, SHEN G Y, et al.X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures[J]. Science, 1997, 276(5316):1242-1245. doi: 10.1126/science.276.5316.1242
    [2] MERKEL S, HEMLEY R J, MAO H K.Finite-element modeling of diamond deformation at multimegabar pressures[J]. Applied Physics Letters, 1999, 74(5):656-658. doi: 10.1063/1.123031
    [3] LI M, GAO C X, PENG G, et al.Thickness measurement of sample in diamond anvil cell[J]. Review of Scientific Instruments, 2007, 78(7):075106. doi: 10.1063/1.2754399
    [4] LIU S G, LI Z R, JING Q M, et al.A novel method to measure the deformation of diamond anvils under high pressure[J]. Review of Scientific Instruments, 2014, 85(4):046113. doi: 10.1063/1.4873335
    [5] 敬秋民, 吴强, 毕延, 等.DAC加载金刚石和样品变形实验与模拟研究[J].高压物理学报, 2013, 27(3):411-416. doi: 10.11858/gywlxb.2013.03.015

    JING Q M, WU Q, BI Y, et al.Experimental study and numerical simulation on deformation of diamond and sample under DAC loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3):411-416. doi: 10.11858/gywlxb.2013.03.015
    [6] SUNG C M, GOETZE C.Pressure distribution in the diamond anvil press and the shear strength of fayalite[J]. Review of Scientific Instruments, 1977, 48(11):1386-1391. doi: 10.1063/1.1134902
    [7] JING Q M, BI Y, WU Q, et al.Yield strength of molybdenum at high pressures[J]. Review of Scientific Instruments, 2007, 78(7):073906. doi: 10.1063/1.2758549
    [8] GAO C X, HAN Y H, MA Y Z, et al.Accurate measurements of high pressure resistivity in a diamond anvil cell[J]. Review of Scientific Instruments, 2005, 76(8):083912. doi: 10.1063/1.2006347
    [9] MOSS W C, HALLQUIST J O, REICHLIN R, et al.Finite element analysis of the diamond anvil cell:achieving 4.6Mbar[J]. Applied Physics Letters, 1986, 48(19):1258-1260. doi: 10.1063/1.96996
    [10] WENG J D, TAO T J, LIU S G, et al.Optical-fiber frequency domain interferometer with nanometer resolution and centimeter measuring range[J]. Review of Scientific Instruments, 2013, 84(11):113103. doi: 10.1063/1.4829615
    [11] 江毅.光纤白光干涉测量术新进展[J].中国激光, 2010, 37(6):1413-1420. http://www.opticsjournal.net/abstract.htm?id=OJ1006030011701w4z7C

    JIANG Y.Progress in fiber optic white-light interferometry[J]. Chinese Journal of Lasers, 2010, 37(6):1413-1420. http://www.opticsjournal.net/abstract.htm?id=OJ1006030011701w4z7C
    [12] 王军, 陈磊, 吴泉英, 等.一种基于白光干涉迈克尔逊干涉仪波片延迟量的测量方法[J].中国激光, 2011, 38(5):1413-1420. http://www.opticsjournal.net/abstract.htm?id=OJ110428000153WsYv2y

    WANG J, CHEN L, WU Q Y, et al.Retardation measurement of wave plates using white-light Michelson interferometer[J]. Chinese Journal of Lasers, 2011, 38(5):1413-1420. http://www.opticsjournal.net/abstract.htm?id=OJ110428000153WsYv2y
    [13] BRUNDAVANAM M M, VISWANATHAN N K, RAO D N.Nanodisplacement measurement using spectral shifts in a white-light interferometer[J]. Applied Optics, 2008, 47(34):6334-6339. doi: 10.1364/AO.47.006334
    [14] MANOJLOVIĆ L M.A simple white-light fiber-optic interferometric sensing system for absolute position measurement[J]. Optics and Lasers in Engineering, 2010, 48(4):486-490. doi: 10.1016/j.optlaseng.2009.08.008
    [15] KUMAR V N, RAO D N.Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials[J]. Journal Optical Society of America B, 1995, 12(9):1559-1563. doi: 10.1364/JOSAB.12.001559
    [16] DU Y L, YAN H M, WU Y, et al.Non-contact thickness measurement for ultra-thin metal foils with differential white light intetferometry[J]. Chinese Optics Letters, 2004, 2(12):701-703.
    [17] AKAHAMA Y, KAWAMURA H.High-pressure Raman spectroscopy of diamond anvils to 250GPa:method for pressure determination in the multimegabar pressure range[J]. Journal of Applied Physics, 2004, 96(7):3748-3751. doi: 10.1063/1.1778482
    [18] HANFLAND M, SYASSEN K.A Raman study of diamond anvils under stress[J]. Journal of Applied Physics, 2004, 57(8):2752-2756.
    [19] BALZARETTI N M, DA JORNADA J A H.Pressure dependence of refractive index of diamond, cubic silicon carbide and cubic boron nitride[J]. Solid State Communication, 1996, 99(12):943-948. doi: 10.1016/0038-1098(96)00341-9
    [20] JING Q M, WU Q, LIU L, et al.An experimental study on SrB4O7:Sm2+ as a pressure sensor[J]. Journal of Applied Physics, 2013, 113:023507. doi: 10.1063/1.4774113
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7876
  • HTML全文浏览量:  3282
  • PDF下载量:  220
出版历程
  • 收稿日期:  2017-03-10
  • 修回日期:  2017-03-22

目录

    /

    返回文章
    返回