正交各向异性材料的三维动态本构模型及其在脉冲X射线热击波模拟中的应用

张昆 汤文辉 冉宪文

张昆, 汤文辉, 冉宪文. 正交各向异性材料的三维动态本构模型及其在脉冲X射线热击波模拟中的应用[J]. 高压物理学报, 2017, 31(6): 727-734. doi: 10.11858/gywlxb.2017.06.007
引用本文: 张昆, 汤文辉, 冉宪文. 正交各向异性材料的三维动态本构模型及其在脉冲X射线热击波模拟中的应用[J]. 高压物理学报, 2017, 31(6): 727-734. doi: 10.11858/gywlxb.2017.06.007
ZHANG Kun, TANG Wen-Hui, RAN Xian-Wen. A Dynamic Constitutive Model of Anisotropic Material in Three-Dimensional Strain and Its Application in the Simulation of Thermal Shock Wave Induced by X-Ray Radiation[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 727-734. doi: 10.11858/gywlxb.2017.06.007
Citation: ZHANG Kun, TANG Wen-Hui, RAN Xian-Wen. A Dynamic Constitutive Model of Anisotropic Material in Three-Dimensional Strain and Its Application in the Simulation of Thermal Shock Wave Induced by X-Ray Radiation[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 727-734. doi: 10.11858/gywlxb.2017.06.007

正交各向异性材料的三维动态本构模型及其在脉冲X射线热击波模拟中的应用

doi: 10.11858/gywlxb.2017.06.007
详细信息
    作者简介:

    张昆(1989-), 男, 博士研究生, 主要从事脉冲束辐照动力学研究.E-mail:nudtzhangkun@163.com

    通讯作者:

    汤文辉(1964-), 男, 博士, 教授, 主要从事高压物理与工程力学研究.E-mail:wenhuitang@163.com

  • 中图分类号: O347

A Dynamic Constitutive Model of Anisotropic Material in Three-Dimensional Strain and Its Application in the Simulation of Thermal Shock Wave Induced by X-Ray Radiation

  • 摘要: 基于三维应变条件下的应力-应变关系,利用Grüneisen物态方程、PUFF物态方程以及Tsai-Hill屈服准则和Johnson-Cook强度模型,建立了正交各向异性复合材料的三维动态本构模型。在此基础上,对一种碳酚醛材料在高能脉冲X射线辐照下所产生的热击波传播现象进行了三维模拟,得到了热击波模拟结果,并将各向异性本构模型与各向同性本构模型的模拟结果进行对比。分析表明,各向异性本构模型不仅反映了固体材料各向异性的特点,而且还能描述材料转变为气体后的动力学行为。模型的建立为各向异性复合材料在脉冲辐照环境下的应用打下重要的理论基础。

     

  • 图  C/TF材料示意

    Figure  1.  Schematic of C/TF material

    图  X射线辐照下C/TF靶的σxx云图

    Figure  2.  σxx contours of the C/TF target by X-ray irradiation

    图  靶板中轴线上的σxx分布

    Figure  3.  Distribution of σxx along the axis

    图  3个固定点处的应力-时间曲线

    Figure  4.  Stress-time curves of 3 fixed points

    表  1  C/TF材料的物态方程参数

    Table  1.   Equation-of-state parameters of C/TF material

    c0/(km/s) ρ0/(g/cm3) s Γ0 γ es/(kJ/g)
    2.35 1.38 1.66 2.32 1.4 5.15
    下载: 导出CSV

    表  2  C/TF材料的弹性参数

    Table  2.   Elastic parameters of C/TF material

    E1/(GPa) E2/(GPa) E3/(GPa) G12/(GPa) G23/(GPa) G31/(GPa) ν12 ν23 ν31 ν21 ν32 ν13
    6.96 5.45 4.87 3.5 2.6 2.8 0.30 0.28 0.28 0.235 0.235 0.40
    下载: 导出CSV

    表  3  C/TF材料的塑性参数

    Table  3.   Plastic parameters of C/TF material

    Y110/(GPa) Y220/(GPa) Y330/(GPa) Y120/(GPa) Y230/(GPa) Y310/(GPa) a11 a22 a33 a12 a23 a31 n11 n22 n33 n12 n23 n31 β
    0.12 0.063 0.17 0.07 0.08 0.10 15.0 11.0 8.5 13.0 10.0 11.8 0.86 0.70 0.87 0.78 0.79 0.86 0.021 8
    下载: 导出CSV
  • [1] NASUTION M R E, WATANABE N, KONDO A.Numerical study on thermal buckling of CFRP-Al honeycomb sandwich composites based on homogenization-localization analysis[J]. Compos Struct, 2015, 132:709-719. doi: 10.1016/j.compstruct.2015.06.009
    [2] 汤文辉, 程周.弹道导弹的突防手段与突防策略研究[J].导弹与航天运载技术, 2009(2):17-19. doi: 10.3969/j.issn.1004-7182.2009.02.005

    TANG W H, CHENG Z.Research on penetration means and penetration strategy for ballistic missile[J]. Missiles and Space Vehicles, 2009(2):17-19. doi: 10.3969/j.issn.1004-7182.2009.02.005
    [3] 黄霞.各向异性材料动态本构模型及其在脉冲X射线辐照下的二维热-力学效应研究[D].长沙: 国防科学技术大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-90002-1012020932.htm
    [4] 周南, 乔登江.脉冲束辐照材料动力学[M].北京:国防工业出版社, 2002.
    [5] 汤文辉, 张若棋, 赵国民.脉冲X射线诱导的热击波[J].高压物理学报, 1995, 9(2):107-111. http://www.gywlxb.cn/CN/abstract/abstract1001.shtml

    TANG W H, ZHANG R Q, ZHAO G M.Thermal shock wave induced by impulsive X-ray[J]. Chinese Journal of High Pressure Physics, 1995, 9(2):107-111. http://www.gywlxb.cn/CN/abstract/abstract1001.shtml
    [6] REMO J L, FURNISH M D, LAWRENCE R J.Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials[J]. J Plasma Phys, 2013, 79(2):121-141. doi: 10.1017/S0022377812000712
    [7] BENHAM R A, MATHEWS F H, HIGGINS P B.Application of light-initiated explosive for simulating X-ray blowoff impulse effects on a full scale reentry vehicle: SAND-76-9019[R]. Albuquerque, USA: Sandia Labs, 1976. http://adsabs.harvard.edu/abs/1976STIN...7726189B
    [8] KIRKPATRICK S W, HOLMES B S.Structural response of thin cylindrical shells subjected to impulsive external loads[J]. AIAA Journal, 1988, 26(1):96-103. doi: 10.2514/3.9856
    [9] LANGLEY R W.Analytical relationships for estimating the effects of X-rays on materials: AD-786926[R]. Huntington Beach: McDonnell-Douglas Astronautics Co., 1974. https://www.osti.gov/biblio/4212562
    [10] HERTEL JR E S, BELL R L, ELRICK M G, et al.CTH: a software family for multi-dimensional shock physics analysis[M]//Shock Waves @ Marseille Ⅰ.Berlin: Springer, 1999: 377-382.
    [11] FLOCK R A, LIU D T.Numerical analysis of "thin film" Grüneisen test measurements[C]//Shock Compression of Condensed Matter-1991.Williamsburg, Virginia, 1992: 403-406. https://www.sciencedirect.com/science/article/pii/B9780444897329500911
    [12] O'DONOGHUE P E, ANDERSON JR C E, FRIESENHAHN G J, et al.A constitutive formulation for anisotropic materials suitable for wave propagation computer programs[J]. J Compos Mater, 1992, 26(13):1860-1884. doi: 10.1177/002199839202601301
    [13] ANDERSON JR C E, COX P A, JOHNSON G R, et al.A constitutive formulation for anisotropic materials suitable for wave propagation computer programs-Ⅱ[J]. Comput Mech, 1994, 15(3):201-223. doi: 10.1007/BF00375030
    [14] GRUJICIC M, PANDURANGAN B, KOUDELA K L, et al.A computational analysis of the ballistic performance of light-weight hybrid composite armors[J]. Appl Surf Sci, 2006, 253(2):730-745. doi: 10.1016/j.apsusc.2006.01.016
    [15] CLEGG R A, WHITE D M, RIEDEL W, et al.Hypervelocity impact damage prediction in composites:Part Ⅰ-material model and characterisation[J]. Int J Impact Eng, 2006, 33(1):190-200. http://www.sciencedirect.com/science/article/pii/S0734743X06001825
    [16] RIEDEL W, NAHME H, WHITE D M, et al.Hypervelocity impact damage prediction in composites:Part Ⅱ-experimental investigations and simulations[J]. Int J Impact Eng, 2006, 33(1):670-680. http://www.sciencedirect.com/science/article/pii/S0734743X06001783
    [17] HUANG X, TANG W, JIANG B.A modified anisotropic PUFF equation of state for composite materials[J]. J Compos Mater, 2012, 46(5):499-506. doi: 10.1177/0021998311415724
    [18] 赵国民, 张若棋, 陈吉斌.圆柱壳体内X射线热击波的二维力学计算[J].国防科技大学学报, 1995(2):105-108. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ502.017.htm

    ZHAO G M, ZHANG R Q, CHEN J B.Two-dimensional dynamic calculation of X-ray thermal shock wave in cylindrical shell[J]. Journal of National University of Defense Technology, 1995(2):105-108. http://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ502.017.htm
    [19] 黄霞, 汤文辉, 蒋邦海, 等.各向异性材料中二维X射线诱导热击波的数值模拟[J].高压物理学报, 2011, 25(1):41-47. http://www.gywlxb.cn/CN/abstract/abstract1334.shtml

    HUANG X, TANG W H, JIANG B H, et al.The numerical simulation of 2-D thermal shock wave induced by X-ray in anisotropic material[J]. Chinese Journal of High Pressure Physics, 2011, 25(1):41-47. http://www.gywlxb.cn/CN/abstract/abstract1334.shtml
    [20] MAEWAL A.A class of theories of plasticity of anisotropic and pressure sensitive materials[J]. Acta Mechanica, 1999, 134(1):109-114. doi: 10.1007/BF01170306
    [21] CHEN J L, SUN C T.A plastic potential function suitable for anisotropic fiber composites[J]. J Compos Mater, 1993, 27(14):1379-1390. doi: 10.1177/002199839302701403
    [22] WEEKS C A, SUN C T.Modeling non-linear rate-dependent behavior in fiber-reinforced composites[J]. Compos Sci Technol, 1998, 58(3/4):603-611. http://www.sciencedirect.com/science/article/pii/S0266353897001838
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  9205
  • HTML全文浏览量:  3379
  • PDF下载量:  248
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-06-22

目录

    /

    返回文章
    返回