高压对钴酸锂的晶体结构和离子导电率的影响

徐丛 孙菲 杨文革

徐丛, 孙菲, 杨文革. 高压对钴酸锂的晶体结构和离子导电率的影响[J]. 高压物理学报, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004
引用本文: 徐丛, 孙菲, 杨文革. 高压对钴酸锂的晶体结构和离子导电率的影响[J]. 高压物理学报, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004
XU Cong, SUN Fei, YANG Wen-Ge. High Pressure Effect on the Structure and Ionic Conductivity in Layered Cobaltite LiCoO2[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004
Citation: XU Cong, SUN Fei, YANG Wen-Ge. High Pressure Effect on the Structure and Ionic Conductivity in Layered Cobaltite LiCoO2[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004

高压对钴酸锂的晶体结构和离子导电率的影响

doi: 10.11858/gywlxb.2017.05.004
基金项目: 

国家自然科学基金 U1530402

国家自然科学基金 51527801

详细信息
    作者简介:

    徐丛(1992—),男,硕士,主要从事功能材料在压力作用下的物性研究.E-mail:cong.xu@hpstar.ac.cn

    通讯作者:

    杨文革(1968—),男,博士,教授,博士生导师,主要从事高压同步辐射科学与技术研究. E-mail:yangwg@hpstar.ac.cn

  • 中图分类号: O521.2

High Pressure Effect on the Structure and Ionic Conductivity in Layered Cobaltite LiCoO2

  • 摘要: 采用金刚石对顶砧(DAC)高压产生装置,结合同步辐射X射线衍射(XRD),对钴酸锂(LiCoO2)粉末样品进行室温下原位高压X射线衍射实验,最高压强达到20.3 GPa。研究结果表明:在20.3 GPa下,LiCoO2的晶体结构非常稳定,并没有发生结构相变;在20.3 GPa范围内测量了晶体沿不同晶轴ac方向的压缩比,发现LiCoO2沿c轴方向的压缩率是沿a轴方向的4.5倍;使用二阶Birch-Murnagha方程拟合出钴酸锂样品的等温状态方程。另外还采用高压原位交流阻抗谱技术(EIS),测量了不同压强下钴酸锂中锂离子导电率,最高压强达到16.8 GPa时,发现在实验的压强范围内,随着压强的增加,离子导电率减小。最后将高压下锂离子的电导率与钴酸锂的晶体结构进行联系,进一步阐述了高压下钴酸锂的微观结构和电学性能之间的关系。

     

  • 图  常温常压下LiCoO2的晶体结构模型

    Figure  1.  Crystal structure of LiCoO2 under atmospheric pressure

    图  LiCoO2不同压强下原位同步辐射X射线衍射谱

    Figure  2.  In-situ synchrotron radiation X-ray diffraction patterns of LiCoO2 under different pressures

    图  LiCoO2在压强6.8 GPa和18.4 GPa下XRD精修图

    Figure  3.  Representative Rietveld refinement for LiCoO2 with R-3m space group under the pressure of 6.8 and 18.4 GPa

    图  LiCoO2晶胞参数ac和压强的关系

    Figure  4.  Structural parameters of LiCoO2 as a function of pressure

    图  LiCoO2p-V曲线状态方程的拟合

    Figure  5.  p-V data of LiCoO2 and fitted Birch-Murnagha relation

    图  LiCoO2中Li—O和Co—O键长随压强变化关系

    Figure  6.  Li—O and Co—O bond length data of LiCoO2 varies with pressure

    图  LiCoO2中Li的跃迁过程

    Figure  7.  Li hops between octahedral sites through an intermediate tetrahedral site in LiCoO2

    图  LiCoO2在特定压强下的复阻抗谱图和拟合图

    Figure  8.  Selected Nyquist plots of impedance spectroscopy of LiCoO2 up to 16.8 GPa

  • [1] LI J, LIU J J, LI S F, LI X F.Research progress on LiNi0.8Co0.15Al0.05O2(NCA) as anode material for lithium ion battery [J].New Chem Mater, 2016, 44:49.
    [2] JONES P C, WISEMAN P J, GOODENOUGH J B.LixCoO2(0 < x≤1):a new cathode material for batteries of high energy density [J].Solid State Ionics, 1981, 3/4:171-174. doi: 10.1016/0167-2738(81)90077-1
    [3] KIM D K, MURALIDHARAN P, LEE H W, et al.Spinel LiMn2O4 nanorods as lithium ion battery cathodes [J].Nano Lett, 2008, 8(11):3948-3952. doi: 10.1021/nl8024328
    [4] PAN C C, BANKS C E, SONG W X, et al.Recent development of LiNixCoyMnzO2:Impact of micro/nano structures for imparting improvements in lithium batteries [J].Transactions of Nonferrous Metals Society of China, 2013, 23(1):108-119. doi: 10.1016/S1003-6326(13)62436-X
    [5] OKADA S, SAWA S, EGASHIRA M, et al.Cathode properties of phosphor-olivine LiMPO4 for lithium secondary batteries [J].J Power Sources, 2001, 97/98:430-432. doi: 10.1016/S0378-7753(01)00631-0
    [6] MURUGAN A V, MURALIGANTH T, FERREIRA P J, et al.Dimensionally modulated, single-crystalline LiMPO4 (M=Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage [J].Inorg Chem, 2009, 48(3):946-952. doi: 10.1021/ic8015723
    [7] MIZOKAWA T, WAKISAKA Y, SUDAYAMA T, et al.Role of oxygen holes in LixCoO2 revealed by soft x-ray spectroscopy [J].Phys Rev Lett, 2013, 111(5):056404. doi: 10.1103/PhysRevLett.111.056404
    [8] IKEDO K, WAKISAKA Y, MIZOKAWA T, et al.Electronic structure of LixCoO2 studied by photoemission spectroscopy and unrestricted Hartree-Fock calculations [J].Phys Rev B, 2010, 82(7):075126. doi: 10.1103/PhysRevB.82.075126
    [9] ARROYO-DE DOMPABLO M E, GALLARDO-AMORES J M, AMADOR U.Lithium insertion in the high-pressure polymorph of FePO4 computational predictions and experimental findings [J].Electrochem Solid-State Lett, 2005, 8(11):A564-A569. doi: 10.1149/1.2039959
    [10] FELL C R, LEE D H, MENG Y S, et al.High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides [J].Energy Environ Sci, 2012, 5(3):6214-6224. doi: 10.1039/c2ee02818b
    [11] HAMMERSLEY A P, SVENSSON S O, HANFLAND M, et al.Two-dimensional detector software:from real detector to idealized image or two-theta scan [J].High Pressure Res, 1996, 14(4):235-248. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025742967/
    [12] TOBY B H.EXPGUI, a graphical user interface for GSAS [J].J Appl Crystallogr, 2001, 34(2):210-213. doi: 10.1107/S0021889801002242
    [13] KANG K, CEDER G.Factors that affect Li mobility in layered lithium transitionmetal oxides [J].Phys Rev B, 2006, 74(9):094105. doi: 10.1103/PhysRevB.74.094105
    [14] BIRCH F.Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K [J].J Geophys Res, 1978, 83(B3):1257-1268. doi: 10.1029/JB083iB03p01257
    [15] WU L M, ZHANG J.Ab initio study of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process [J].J Appl Phys, 2015, 118(22):225101. doi: 10.1063/1.4937409
    [16] LIU Y.Study of grain boundary electrical properties in yttria stabilized zirconium oxide electrolyte by complex impedence spectroscopy [J].Phys Exp, 2005, 11:15. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLSL200511004.htm
    [17] ZHANG J M, YANG C C, SHI Q Z, et al.Study on structure of electrodeposition coating of calcium phosphate ceramics by electrochemical impedance spectroscopy [J].Journal of the Chinese Creamic Society, 2003, 31(2):127. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXYB200302004.htm
    [18] HUEBNER J S, DILLENBURG R G.Impedance spectra of hot, dry silicate minerals and rock:qualitative interpretation of spectra [J].Am Mineral, 1995, 80(1/2):46-64. https://pubs.er.usgs.gov/publication/70019721
    [19] XU Y S, POE B T, SHANKLAND T J, et al.Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions [J].Science, 1998, 280(5368):1415-1417. doi: 10.1126/science.280.5368.1415
  • 加载中
图(8)
计量
  • 文章访问数:  8940
  • HTML全文浏览量:  4297
  • PDF下载量:  260
出版历程
  • 收稿日期:  2017-03-29
  • 修回日期:  2017-04-19

目录

    /

    返回文章
    返回