高压下Al0.86Ga0.14N半导体合金“双模”拉曼声子行为研究

张雷雷 雷力 胡启威 冯雷豪 戚磊 蒲梅芳

张雷雷, 雷力, 胡启威, 冯雷豪, 戚磊, 蒲梅芳. 高压下Al0.86Ga0.14N半导体合金“双模”拉曼声子行为研究[J]. 高压物理学报, 2017, 31(5): 521-528. doi: 10.11858/gywlxb.2017.05.003
引用本文: 张雷雷, 雷力, 胡启威, 冯雷豪, 戚磊, 蒲梅芳. 高压下Al0.86Ga0.14N半导体合金“双模”拉曼声子行为研究[J]. 高压物理学报, 2017, 31(5): 521-528. doi: 10.11858/gywlxb.2017.05.003
ZHANG Lei-Lei, LEI Li, HU Qi-Wei, FENG Lei-Hao, QI Lei, PU Mei-Fang. Two-Mode Behavior in Raman Spectra of Al0.86Ga0.14N Alloy under High Pressure[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 521-528. doi: 10.11858/gywlxb.2017.05.003
Citation: ZHANG Lei-Lei, LEI Li, HU Qi-Wei, FENG Lei-Hao, QI Lei, PU Mei-Fang. Two-Mode Behavior in Raman Spectra of Al0.86Ga0.14N Alloy under High Pressure[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 521-528. doi: 10.11858/gywlxb.2017.05.003

高压下Al0.86Ga0.14N半导体合金“双模”拉曼声子行为研究

doi: 10.11858/gywlxb.2017.05.003
基金项目: 

四川大学优秀青年学者自然科学基金 2015SCU04A04

中子物理重点实验室研究基金 2015BB03

详细信息
    作者简介:

    张雷雷(1990—),男,硕士研究生,主要从事高温高压下新材料的合成与物性研究. E-mail:luanzhanglei123@163.com

    通讯作者:

    雷力(1980—),男,博士,副教授,硕士生导师,主要从事极端条件光散射谱学和高压物理化学研究. E-mail:lei@scu.edu.cn

  • 中图分类号: O521.2

Two-Mode Behavior in Raman Spectra of Al0.86Ga0.14N Alloy under High Pressure

  • 摘要: 氮化铝镓(AlxGa1-xN)合金是重要的半导体材料,在发光二极管和紫外探测器等领域都有广阔的应用前景。对高铝成分AlxGa1-xN合金的高压行为研究还较为稀少。利用原位拉曼光谱对高铝成分的AlxGa1-xN合金与本征的GaN和AlN进行了对比研究。结果表明,Al原子掺杂引起GaN亚晶格的收缩效应与对本征GaN施加外部正压力的作用效果等效,引起AlN亚晶格的拉伸效应与对本征AlN施加外部负压力的作用效果相似。Al原子掺杂引起Al0.86Ga0.14N晶格的收缩效应在晶胞c轴方向上更显著。研究还发现,Al原子掺杂对类AlN拉曼声子振动模高压行为的影响比类GaN更明显。

     

  • 图  (a)、(b)、(c) AlN、GaN和Al0.86Ga0.14N的室温常压拉曼光谱的分峰拟合谱, (d) GaN (AlN)的不同拉曼声子模的原子振动方式示意图

    Figure  1.  (a), (b), (c) The fitted Raman spectrum of the Lorentzian for AlN, GaN and Al0.86Ga0.14N under ambient pressure and at room temperature; (d) the atomic displacement of different Raman modes for hexagonal GaN (AlN)

    图  AlN、GaN和Al0.86Ga0.14N在不同压力下的拉曼光谱

    Figure  2.  Raman spectrum of AlN, GaN and Al0.86Ga0.14N under different pressures and at room temperature

    图  不同拉曼声子振动模的拉曼频移随外部加载压力的变化关系

    Figure  3.  Relation between Raman shifts and applied pressure

    图  不同拉曼声子振动模频移差值随外部加载压力的变化关系

    Figure  4.  Variation of difference in Raman shifts with applied pressure

    表  1  利用方程(2)拟合所得的零压拉曼声子频率ω0和压力系数(dω/dp)p=0

    Table  1.   Zero-pressure Raman phonon frequencies ω0 and pressure coefficients (dω/dp)p=0 as fitted from the parameters used in Eq.(2)

    Sample ω0/(cm-1) (dω/dp)p=0/(cm-1·GPa-1) Ref.
    A1(TO) E1(TO) E2(high) A1(TO) E1(TO) E2(high)
    GaN 533.8 560.0 568.7 3.79 3.56 3.83 This work
    531.7 558.2 567.0 3.90 3.94 4.24 [20]
    532.2 560.6 569.1 4.20 3.80 4.16 [21]
    531.0 560.0 568.0 4.06 3.68 4.17 [22]
    Al0.86Ga0.14N GaN-like 585.0 597.2 608.4 3.95 4.08 4.10 This work
    Al0.86Ga0.14N AlN-like 618.4 660.0 650.0 4.02 4.89 5.27 This work
    AlN 610.4 668.9 654.0 3.87 4.12 4.82 This work
    608.5 669.3 655.5 4.40 4.55 4.99 [20]
    608.0 666.0 653.0 4.35 5.33 5.40 [23]
    611.0 671.6 659.3 3.50 4.84 4.97 [24]
    610.0 669.0 657.0 4.05 4.52 4.78 [25]
    下载: 导出CSV
  • [1] CHANG I F, MITRA S S.Long wavelength optical phonons in mixed crystals [J].Adv Phys, 1971, 20(85):359-404. doi: 10.1080/00018737100101271
    [2] DAVYDOV V Y, GONCHARUK I N, SMIRNOV A N, et al.Composition dependence of optical phonon energies and Raman line broadening in hexagonal AlxGa1-xN alloys [J].Phys Rev B, 2002, 65(12):125203. doi: 10.1103/PhysRevB.65.125203
    [3] KUBALL M.Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control [J].Surf Interface Anal, 2001, 31(10):987-999. doi: 10.1002/sia.1134/pdf
    [4] BELOUSOV A, KATRYCH S, HAMETNER K, et al.AlxGa1-xN bulk crystal growth:crystallographic properties and p-T phase diagram [J].J Cryst Growth, 2010, 312(18):2585-2592. doi: 10.1016/j.jcrysgro.2010.04.017
    [5] OHFUJI H, YAMAMOTO M.EDS quantification of light elements using osmium surface coating [J].J Mineral Petrolog Sci, 2015, 110(4):189-195. https://ci.nii.ac.jp/naid/130005094723
    [6] ZHOU Y, IRIFUNE T, OHFUJI H, et al.Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K [J].Phys Chem Miner, 2017, 44(1):33-42. doi: 10.1007/s00269-016-0834-5
    [7] KOJIMA Y, OHFUJI H.Structure and stability of carbon nitride under high pressure and high temperature up to 125 GPa and 3000 K [J].Diam Relat Mater, 2013, 39:1-7. doi: 10.1016/j.diamond.2013.07.006
    [8] TAN L, HU Q, LEI L, et al.Effects of substitution, pressure, and temperature on the phonon mode in layered rocksalt-type Li(1-x)/2Ga(1-x)/2ZnxO (x=0.036-0.515) alloys [J].J Appl Phys, 2015, 118(18):185903. doi: 10.1063/1.4935619
    [9] MAO H K, BELL P M.High-pressure physics:sustained static generation of 1.36 to 1.72 megabars [J].Science, 1978, 200(4346):1145-1147. doi: 10.1126-science.200.4346.1145/
    [10] XU J A, MAO H K, BELL P M.High-pressure ruby and diamond fluorescence—observations at 0.21 to 0.55 terapascal [J].Science, 1986, 232(4756):1404-1406. doi: 10.1126/science.232.4756.1404
    [11] ZHA C S, MAO H, HEMLEY R J.Elasticity of MgO and a primary pressure scale to 55 GPa [J].PNAS, 2000, 97(25):13494-13499. doi: 10.1073/pnas.240466697
    [12] TEMPLE P A, HATHAWAY C E.Multiphonon Raman spectrum of silicon [J].Phys Rev B, 1973, 7(8):3685. doi: 10.1103-PhysRevB.7.3685/
    [13] DAVYDOV V Y, KITAEV Y E, GONCHARUK I N, et al.Phonon dispersion and Raman scattering in hexagonal GaN and AlN [J].Phys Rev B, 1998, 58(19):12899. http://adsabs.harvard.edu/abs/1998PhRvB..5812899D
    [14] DAVYDOV V Y, GONCHARUK I N, SMIRNOV A N, et al.Composition dependence of optical phonon energies and Raman line broadening in hexagonal AlxGa1-xN alloys [J].Phys Rev B, 2002, 65(12):125203. doi: 10.1103/PhysRevB.65.125203
    [15] HABOECK U, SIEGLE H, HOFFMANN A, et al.Lattice dynamics in GaN and AlN probed with first-and second-order Raman spectroscopy [J].Phys Status Solidi C, 2003(6):1710-1731. doi: 10.1002/pssc.200303130/full
    [16] GONI A R, SIEGLE H, SYASSEN K, et al.Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN [J].Phys Rev B, 2001, 64(3):035205. doi: 10.1103/PhysRevB.64.035205
    [17] YIN W W, JIANG X D, HU Q W, et al.Raman study of GaN synthesized by high-pressure solid-state metathesis (HPSSM) reaction [J].Journal of Light Scattering, 2015(1):17-23. http://en.cnki.com.cn/Article_en/CJFDTotal-GSSX201501003.htm
    [18] PERLIN P, JAUBERTHIE-CARILLON C, ITIE J P, et al.Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure [J].Phys Rev B, 1992, 45(1):83. doi: 10.1103-PhysRevB.45.83/
    [19] MANJÓN F J, ERRANDONEA D, ROMERO A H, et al.Lattice dynamics of wurtzite and rocksalt AlN under high pressure:effect of compression on the crystal anisotropy of wurtzite-type semiconductors [J].Phys Rev B, 2008, 77(20):205204. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000077000020205204000001&idtype=cvips&gifs=Yes
    [20] SANJURJO J A, LOPEZ-CRUZ E, VOGL P, et al.Dependence on volume of the phonon frequencies and the ir effective charges of several Ⅲ-Ⅴ semiconductors[J].Phys Rev B, 1983, 28(8):4579.
    [21] YAKOVENKO E V, GAUTHIER M, POLIAN A.High-pressure behavior of the bond-bending mode of AIN [J].J Exp Theor Phys, 2004, 98(5):981-985. doi: 10.1134/1.1767565
    [22] YANG X, WU J, CHEN Z, et al.Raman scattering and ferromagnetism of (Ga, Mn)N films grown by MOCVD [J].Solid State Commun, 2007, 143(4):236-239. http://www.sciencedirect.com/science/article/pii/S0038109807003833
    [23] HALSALL M P, HARMER P, PARBROOK P J, et al.Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN [J].Phys Rev B, 2004, 69(23):235207. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000069000023235207000001&idtype=cvips&gifs=Yes
    [24] SHEN L, CUI Q, MA Y, et al.Raman scattering study of AlN nanowires under high pressure [J].J Phys Chem C, 2010, 114(18):8241-8244. doi: 10.1021/jp101065k
    [25] LEI L, OHFUJI H, IRIFUNE T, et al.Disorder-activated Raman spectra of cubic rocksalt-type Li(1-x)/2Ga(1-x)/2MxO (M=Mg, Zn) alloys [J].J Appl Phys, 2012, 112(4):043501. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6270376
    [26] BOULFELFEL S E, ZAHN D, GRIN Y, et al.Walking the Path from B4- to B1-type structures in GaN [J].Phys Rev Lett, 2007, 99(12):125505. http://www.ncbi.nlm.nih.gov/pubmed/17930518
    [27] WANG S, ZHANG X, YANG H, et al.Effect of fluctuation in Al incorporation on the microstructure, bond lengths, and surface properties of an AlxGa1-xN epitaxial layer [J].Electron Mater Lett, 2015, 11(4):675-681. doi: 10.1007/s13391-015-4424-3
    [28] SAITOH H, UTSUMI W, KANEKO H, et al.Synthesis of AlxGa1-xN alloy by solid-phase reaction under high pressure [J].Jap J Appl Phys, 2004, 43(7B):981-983. doi: 10.1143/JJAP.43.L981
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  8338
  • HTML全文浏览量:  3373
  • PDF下载量:  375
出版历程
  • 收稿日期:  2017-02-25
  • 修回日期:  2017-03-31

目录

    /

    返回文章
    返回