冲击引发Ti-Si活性粉体反应过程研究

崔乃夫 陈鹏万 周强 周丙丙

崔乃夫, 陈鹏万, 周强, 周丙丙. 冲击引发Ti-Si活性粉体反应过程研究[J]. 高压物理学报, 2017, 31(4): 478-485. doi: 10.11858/gywlxb.2017.04.017
引用本文: 崔乃夫, 陈鹏万, 周强, 周丙丙. 冲击引发Ti-Si活性粉体反应过程研究[J]. 高压物理学报, 2017, 31(4): 478-485. doi: 10.11858/gywlxb.2017.04.017
CUI Nai-Fu, CHEN Peng-Wan, ZHOU Qiang, ZHOU Bing-Bing. Shock Induced Reaction Process of Ti-Si Reactive Powder[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478-485. doi: 10.11858/gywlxb.2017.04.017
Citation: CUI Nai-Fu, CHEN Peng-Wan, ZHOU Qiang, ZHOU Bing-Bing. Shock Induced Reaction Process of Ti-Si Reactive Powder[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478-485. doi: 10.11858/gywlxb.2017.04.017

冲击引发Ti-Si活性粉体反应过程研究

doi: 10.11858/gywlxb.2017.04.017
基金项目: 

国家自然科学基金 11172043

详细信息
    作者简介:

    崔乃夫(1987—), 男,博士,主要从事冲击合成新材料研究.E-mail:naifuc@163.com

  • 中图分类号: O521.23

Shock Induced Reaction Process of Ti-Si Reactive Powder

  • 摘要: 采用二级轻气炮驱动飞片高速冲击样品管引发管中Ti-Si活性粉体的自蔓延反应,研究在冲击加载条件下,Ti-Si活性粉体中冲击波速度与燃烧反应速度的关系。在实验过程中,采用高速相机对自蔓延反应过程中燃烧波和冲击波的传播速度进行测量。实验结果表明:冲击波在活性粉体中的传播速度接近飞片运动的初始速度,并且随着传播距离的增加,冲击波速度明显减小,这一现象在冲击加载纯Si粉的过程中也得到验证;在冲击加载条件下,活性粉体中燃烧反应的燃烧波以每秒几厘米的速度传播,与冲击波在活性粉体中的传播速度相差巨大,未发现两者相互作用的过程,即未出现冲击波传播速度增加的现象。

     

  • 图  W丝点燃实验示意图及实物照片

    Figure  1.  Schematic and physical photos of W filament ignition experiment

    图  轻气炮冲击加载实验示意图及实物照片

    Figure  2.  Schematic and physical photos of shock loading experiment by gas gun

    图  W丝点燃实验回收样品管的线切割照片

    Figure  3.  Photo of recovered sample tube by line cutting in W filament ignition experiment

    图  W丝点燃实验中回收样品的XRD图

    Figure  4.  XRD spectrum of recovered sample in W filament ignition experiment

    图  W丝点燃实验中高速相机采集到的燃烧波传播过程

    Figure  5.  Combustion wave propagation recorded by high speed camera in W filament ignition experiment

    图  飞片速度为1.69km/s时冲击加载纯Si回收样品管线切割照片

    Figure  6.  Photo of recovered sample tube by line cutting at flyer velocity 1.69km/s in pure Si shock loading experiment

    图  飞片速度为1.69km/s时冲击加载纯Si实验中,采样频率为15万幅/秒的高速相机采集图像

    Figure  7.  Photos taken by high speed camera with 150000 frame/s frequency at flyer velocity 1.69km/s in pure Si shock loading experiment

    图  飞片速度为1.07km/s时冲击Ti-Si活性粉体回收样品管线切割照片

    Figure  8.  Photo of recovered sample tube by line cutting at flyer velocity 1.07km/s in Ti-Si shock loading experiment

    图  飞片速度为1.07km/s时冲击Ti-Si活性粉体回收样品管不同位置处(见图 8)的XRD图谱

    Figure  9.  XRD spectrum of recovered Ti-Si powder at different locations (see Fig. 8) of sample tube at flyer velocity 1.07km/s in shock loading experiment

    图  10  飞片速度为1.07km/s时冲击Ti-Si活性粉体实验中,采样频率为15万幅/秒的高速相机采集图像

    Figure  10.  Photos taken by high speed camera with 150000 frame/s frequency at flyer velocity of 1.07km/s in Ti-Si shock loading experiment

    图  11  飞片速度为1.68km/s时冲击Ti-Si活性粉体回收样品管线切割照片

    Figure  11.  Photo of recovered sample tube by line cutting at flyer velocity 1.68km/s in Ti-Si shock loading experiment

    图  12  飞片速度为1.68km/s时冲击Ti-Si活性粉体回收样品管不同位置处(见图 11)的XRD图谱

    Figure  12.  XRD spectrum of recovered Ti-Si powder at different locations (see Fig. 11) of sample tube at flyer velocity 1.68km/s in shock loading experiment

    图  13  飞片速度为1.68km/s时冲击Ti-Si活性粉体实验中,采样频率为1万幅/秒的高速相机采集图像

    Figure  13.  Photos taken by high speed camera with 10000 frame/s frequency at flyer velocity 1.68km/s in Ti-Si shock loading experiment

    图  14  飞片速度为1.68km/s时冲击Ti-Si活性粉体实验中,采样频率为15万幅/秒的高速相机采集图像(第一阶段)

    Figure  14.  Photos taken by high speed camera with 150000 frame/s frequency at flyer velocity 1.68km/s in Ti-Si shock loading experiment (1st part)

    图  15  飞片速度为1.68km/s时冲击Ti-Si活性粉体实验中,采样频率为15万幅/秒的高速相机采集图像(第二阶段)

    Figure  15.  Photos taken by high speed camera with 150000 frame/s frequency at flyer velocity 1.68km/s in Ti-Si shock loading experiment (2nd part)

    图  16  飞片速度为1.68km/s时冲击Ti-Si活性粉体实验中,采样频率为15万幅/秒的高速相机采集图像(第三阶段)

    Figure  16.  Photos taken by high speed camera with 150000 frame/s frequency at flyer velocity 1.68km/s in Ti-Si shock loading experiment (3rd part)

    表  1  轻气炮冲击加载实验条件

    Table  1.   Experimental condition of shock loading by gas gun

    No. Sample Flyer velocity/
    (km/s)
    Sampling frequency of high speed camera/(frame/s)
    Low frequency High frequency
    1 Ti-Si (Mole ratio 5:3) 1.07 10000 150000
    2 Ti-Si (Mole ratio 5:3) 1.68 10000 150000
    3 Si 1.33 10000 150000
    4 Si 1.69 10000 150000
    下载: 导出CSV
  • [1] Committee on Advanced Energetic Materials and Manufacturing Technologies, National Research Council.Advanced energetic materials[M]. Washington:National Academy Press, 2004.
    [2] EAKINS D E, THADHANI N N.Shock compression of reactive powder mixtures[J]. Int Mater Rev, 2009, 54(4):181-213. doi: 10.1179/174328009X461050
    [3] 张先锋, 赵晓宁, 乔良.反应金属冲击反应过程的理论分析[J].爆炸与冲击, 2010, 30(2):145-151. http://d.old.wanfangdata.com.cn/Periodical/bzycj201002006

    ZHANG X F, ZHAO X N, QIAO L.The theoretical analysis of metal shock reaction process[J]. Explosion and Shock Waves, 2010, 30(2):145-151. http://d.old.wanfangdata.com.cn/Periodical/bzycj201002006
    [4] PSAKHIE S G, SKRIPNYAK V A.Shock induced chemical processing[M]. US Army Research Office, 1996.
    [5] MEYERS M A.A fundamental study of shock-induced chemical reactions: A842003[R]. San Diego: Department of Applied Mechanics and Engineering Sciences, University of California, 1994.
    [6] THADHANI N, CHEN E.Shock synthesis of materials workshop held in Atlanta: A148003[R]. Atlanta: Georgia Institute of Technology, 1995.
    [7] MERZHANOV A G.Combustion and explosion processes in physical chemistry and technology of inorganic materials[J]. Russ Chem Rev, 2003, 72(4):289-310. doi: 10.1070/RC2003v072n04ABEH000766
    [8] FERRANTI L, THADHANI N N.Dynamic impact characterization of Al+Fe2O3+30% epoxy composites using time synchronized high-speed camera and VISAR measurements[C]//Materials Research Society Proceedings.Cambridge University Press, 2006: 588-593.
    [9] TOMAR V, ZHOU M.Molecular dynamics simulations of shock-induced thermite reaction[J]. Mater Sci Forum, 2004, 465:157-162. http://www.scientific.net/MSF.465-466.157
    [10] BOSLOUGH M B.A thermochemical model for shock-induced reactions (heat detonations) in solids[J]. J Chem Phys, 1990, 92(3):1839-1848. doi: 10.1063/1.458066
    [11] BENNETT L S, HORIE Y.Shock-induced inorganic reaction and condensed phase detonations[J]. Shock Waves, 1994, 4(3):127-136. doi: 10.1007/BF01417428
    [12] JIANG J, GOROSHIN S, LEE J H S.Shock wave induced chemical reaction in Mn+S mixture[C]// Proceedings of the APS Shock Compression of Condensed Matter, 1997: 655-658.
    [13] GUR'EV D L, GORDOPOLOV Y A, BATSANOV S S.Solid-state synthesis of Zn-Te in shock wave[J]. Combust Explo Shock Waves, 2006, 42(1):116-124. doi: 10.1007/s10573-006-0014-x
    [14] BOLKHOVITINOV L G, BATSANOV S S.Theory of solid-state detonation[J]. Combust Explo Shock Waves, 2007, 43(2):219-221. doi: 10.1007/s10573-007-0030-5
    [15] GUR'EV D L, GORDOPOLOV Y A, BATSANOV S S, et al.Solid-state detonation in the zinc-sulfur system[J]. Appl Phys Lett, 2006, 88:024102. doi: 10.1063/1.2164411
    [16] JETTE F X, GOROSHIN S, HIGGINS A J, et al.Experimental investigation of gasless detonation in metal-sulfur compositions[J]. Combust Explo Shock Waves, 2009, 45(2):211-217. doi: 10.1007/s10573-009-0028-2
    [17] LIU J J, BAI Y, CHEN P W, et al.Reaction synthesis of TiSi2 and Ti5Si3 by ball-milling and shock loading and their photocatalytic activities[J]. J Alloy Compds, 2013, 555:375-380. doi: 10.1016/j.jallcom.2012.12.100
    [18] LIU J J, CUI N F, CHEN P W.Shock-induced reactions in ball-milled Ti-Si powder mixtures[C]//6th International Symposium on Explosive Production of New Materials (EPNM-2012).Strasbourg, France, 2012.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  6985
  • HTML全文浏览量:  2910
  • PDF下载量:  196
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2016-12-20

目录

    /

    返回文章
    返回