Influence of Bend Structure on Air ShockwaveGenerated from Gas Explosion in theStraight Tunnel before the Bend

PANG Lei LIU Hai-Ying XIA Deng-You LÜ Peng-Fei

庞磊, 刘海营, 夏登友, 吕鹏飞. 转弯结构对其前方直巷内气体爆炸冲击波的影响[J]. 高压物理学报, 2017, 31(4): 409-418. doi: 10.11858/gywlxb.2017.04.009
引用本文: 庞磊, 刘海营, 夏登友, 吕鹏飞. 转弯结构对其前方直巷内气体爆炸冲击波的影响[J]. 高压物理学报, 2017, 31(4): 409-418. doi: 10.11858/gywlxb.2017.04.009
PANG Lei, LIU Hai-Ying, XIA Deng-You, LÜ Peng-Fei. Influence of Bend Structure on Air ShockwaveGenerated from Gas Explosion in theStraight Tunnel before the Bend[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 409-418. doi: 10.11858/gywlxb.2017.04.009
Citation: PANG Lei, LIU Hai-Ying, XIA Deng-You, LÜ Peng-Fei. Influence of Bend Structure on Air ShockwaveGenerated from Gas Explosion in theStraight Tunnel before the Bend[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 409-418. doi: 10.11858/gywlxb.2017.04.009

Influence of Bend Structure on Air ShockwaveGenerated from Gas Explosion in theStraight Tunnel before the Bend

doi: 10.11858/gywlxb.2017.04.009
Funds: 

National Natural Science Foundation of China 51404029

National Natural Science Foundation of China 51604031

Project of Key Laboratory of Ministry of Public Security of Fire Fighting and Rescue Technology KF201607

More Information
    Author Bio:

    PANG Lei(1982—), male, doctor, associate professor, major in explosion safety.E-mail:pang@bipt.edu.cn

    Corresponding author: LÜ Peng-Fei(1986—), male, doctor, major in explosion safety.E-mail:lvpengfei@bipt.edu.cn
  • 摘要: 转弯结构是煤矿巷道最基本的建筑单元之一。研究转弯结构对井下瓦斯爆炸的影响规律有助于煤巷抗爆能力评估和优化设计。基于此,借助数值模拟研究了不同转弯条件下转弯前直巷道内局部瓦斯爆炸流场,重点分析了转弯前直巷道内冲击波传播规律。研究表明:对于同一转弯结构,越靠近转弯位置,与直巷道内相应位置处的爆炸冲量的差异越明显;对于不同的转弯结构,转弯角度越大,与直巷道相应位置处的爆炸冲量的差异则越大。基于反射波对转弯前直巷道内原始冲击波的影响,建立了临界尺度距离随转弯角度的定量关系。在转弯处,爆炸冲量随转弯角度的增加而增大,与直巷道相应位置处的爆炸冲量相比,其增长比例随转弯角度的增大呈非线性增长。

     

  • Figure  1.  Tunnel top view for AutoReaGas

    Figure  2.  Schematics of 4 tunnels for FLUENT

    Figure  3.  Pressure distributions in the 135° bend tunnel

    Figure  4.  Overpressure vs. time at different scaled distances (L/φ) before the bend for the 135° bend tunnel

    Figure  5.  Impulsevs. scaled distance in the straighttunnel beforethe bend

    Figure  6.  Nonlinear fit of critical scaled distance with bend angle

    Figure  7.  Nonlinear fit of increase percentage of impulse withbend angle compared with that in 0° tunnel

    Table  1.   Impulses of section at 10φ distance from the bend location

    Bend angle θ/(°) Imax/(kPa·s) Imin/(kPa·s) BI
    0 216.64 216.64 1.000 0
    45 203.84 203.82 1.000 1
    90 164.19 164.01 1.001 1
    135 142.10 141.89 1.001 5
    下载: 导出CSV

    Table  2.   Average impulses of the section 10φ away from the bend

    Bend angle θ/(°) Iave/(kPa·s) Iave(0°)/Iave(θ)
    0 216.64 1.000 0
    45 203.83 1.062 8
    90 164.09 1.320 3
    135 141.99 1.525 7
    下载: 导出CSV

    Table  3.   Overpressure and arrival time of overpressure peaks at different scaled distances (L/φ)

    L/φ t1/(s) t2/(s) (t1-t2)/(s) p1/(kPa) p2/(kPa) p1/p2
    300 0.662 0 3.635 0 2.973 0 244.5 83.6 2.925
    250 0.870 5 3.528 5 2.658 0 227.0 90.6 2.506
    200 1.074 5 3.356 2 2.281 7 212.5 94.5 2.249
    150 1.287 0 3.171 1 1.884 1 199.1 100.0 1.991
    100 1.507 0 2.884 9 1.377 9 187.4 125.0 1.499
    50 1.725 0 2.456 0 0.731 0 182.0 177.1 1.028
    30 1.805 0 2.250 0 0.445 0 179.4 214.2 0.838
    10 1.882 9 2.010 1 0.127 2 177.0 265.0 0.668
    下载: 导出CSV

    Table  4.   Percentage of impulse in bent tunnels above that at the same place in the 0° tunnelat various scaled distances before the bend

    L/φ Increase percentage/(%)
    45° bend 90° bend 135° bend
    325 0.37 1.66 3.23
    300 0.92 4.48 6.77
    275 1.36 5.79 8.24
    250 1.57 6.98 9.82
    225 1.80 8.25 11.62
    200 2.10 9.66 13.66
    175 2.47 11.23 15.98
    150 2.85 12.98 18.56
    125 3.34 15.11 21.71
    100 4.08 17.95 25.91
    75 5.14 21.52 31.26
    50 6.64 26.52 38.85
    30 8.22 32.45 47.74
    20 9.29 36.47 53.79
    10 10.73 41.53 61.41
    下载: 导出CSV

    Table  5.   Critical scaled distance for the reflectedshockwave in the straight tunnel before the bendto exert significant influence (> 10%)

    Bend angle/(°) Critical scaled distance(L/φ)
    0 0
    45 10
    90 175
    135 225
    下载: 导出CSV

    Table  6.   Increase percentage of impulse abovethat in the 0° tunnel at the bend location

    Bendangle/(°) Impulse atthe bend/(kPa·s) Increase percentageof impulse/(%)
    0 232.58 0
    45 268.49 15.44
    90 399.96 71.97
    135 472.58 103.19
    下载: 导出CSV
  • [1] 王树山, 焦清介, 冯长根.爆轰波转弯传播的延迟现象[J].北京理工大学学报, 1994, 14(4):337-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158082

    WANG S S, JIAO Q Q, FENG C G.The time delay of detonation propagating in turning charge[J]. Journal of Beijing Institute Technology, 1994, 14(4):337-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158082
    [2] QU Z M, ZHOU X Q.Numerical analysis on propagation and attenuation of shockwaves in bidirectional turn tunnel during gas explosion[C]//Progress in Mining Science and Safety Technology, Pts A and B.Science Press USA Inc, 2007: 1453-1458.
    [3] NAKAYAMA Y, KIM D, ISHIKAWA K, et al.Large-scale explosion experiment of a model underground magazine[J]. Sci Technol Energ Mater, 2008, 69(3/4):123-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ffd25229871876eeb4af5dfda9b5bf3
    [4] 侯玮, 曲志明, 骈龙江.瓦斯爆炸冲击波在单向转弯巷道内传播及衰减数值模拟[J].煤炭学报, 2009, 34(4):509-513. doi: 10.3321/j.issn:0253-9993.2009.04.016

    HOU W, QU Z M, PIAN L J.Numerical simulation on propagation and attenuation of shockwaves in simplex turn tunnel during gas explosion[J]. Journal of China Coal Society, 2009, 34(4):509-513. doi: 10.3321/j.issn:0253-9993.2009.04.016
    [5] ZHAI C, LIN B Q, YE Q, et al.Influence of geometry shape on gas explosion propagation laws in bend roadways[J]. Procedia Earth Planet Sci, 2009, 1(1):193-198. doi: 10.1016/j.proeps.2009.09.032
    [6] KIM D, NAKAYAMA Y.Small-scale explosion experiment of an underground magazine model[J]. Sci Technol Energ Mater, 2010, 71(3/4):88-91.
    [7] SAVENK C K.井下空气冲击波[M].龙维祺, 于亚伦, 译.北京: 冶金工业出版社, 1979.
    [8] ZHANG Q, QIN B, LIN D C.Estimation of pressure distribution for shockwave through the bend of bend laneway[J]. Safety Sci, 2010, 48(10):1263-1268. doi: 10.1016/j.ssci.2010.04.003
    [9] ZHANG Q, PANG L, LIANG H M.Effect of scale on the explosion of methane in air and its shockwave[J]. J Loss Prevent Proc, 2011, 24(1):43-48. doi: 10.1016/j.jlp.2010.08.011
    [10] SALZANO E, MARRA F S, RUSSO G, et al.Numerical simulation of turbulent gas flames in tubes[J]. J Hazard Mater, 2002, 95(3):233-247. doi: 10.1016/S0304-3894(02)00161-9
    [11] JANOVSKY B, SELESOVSKY P, HORKEL J, et al.Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation[J]. J Loss Prevent Proc, 2006, 19(2/3):280-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f5915015eba45f2ace61d452cbdd371
    [12] KINDRACKI J, KOBIERA A, RARATA G, et al.Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels[J]. J Loss Prevent Proc, 2007, 20(4/5/6):551-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=54639248ffe7835106d59b3371e81b1d
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  6963
  • HTML全文浏览量:  2652
  • PDF下载量:  57
出版历程
  • 收稿日期:  2016-09-29
  • 修回日期:  2016-11-30

目录

    /

    返回文章
    返回