超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为

张品亮 龚自正 曹燕 李宇 徐坤博 牟永强 武强 宋光明

张品亮, 龚自正, 曹燕, 李宇, 徐坤博, 牟永强, 武强, 宋光明. 超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为[J]. 高压物理学报, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004
引用本文: 张品亮, 龚自正, 曹燕, 李宇, 徐坤博, 牟永强, 武强, 宋光明. 超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为[J]. 高压物理学报, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004
ZHANG Pin-Liang, GONG Zi-Zheng, CAO Yan, LI Yu, XU Kun-Bo, MU Yong-Qiang, WU Qiang, SONG Guang-Ming. Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004
Citation: ZHANG Pin-Liang, GONG Zi-Zheng, CAO Yan, LI Yu, XU Kun-Bo, MU Yong-Qiang, WU Qiang, SONG Guang-Ming. Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 231-238. doi: 10.11858/gywlxb.2017.03.004

超高速撞击下47Zr45Ti5Al3V合金的宏观与微观响应行为

doi: 10.11858/gywlxb.2017.03.004
基金项目: 

国家自然科学基金青年科学基金 11505299

技术基础科研项目 JSHS2015203B002

详细信息
    作者简介:

    张品亮(1986-), 男, 博士, 工程师, 主要从事航天器空间碎片防护、材料动态力学性能和空间碎片移除等研究.E-mail:zhangpinliang620@126.com

    通讯作者:

    龚自正(1964-), 男, 博士, 研究员, 主要从事航天器空间碎片超高速撞击防护、空间碎片在轨探测与移除、材料动态力学性能、高压物理等研究.E-mail:gongzz@263.net

  • 中图分类号: O521.2

Macro- and Micro-Damage Behaviors of 47Zr45Ti5Al3V Alloy in Hypervelocity Impact

  • 摘要: 为了研究新型锆钛合金47Zr45Ti5Al3V在空间微小碎片环境中的适用性,采用激光驱动微小飞片超高速撞击方式,开展了微小飞片单次和累积多次超高速撞击实验。采用表面轮廓仪测量了撞击坑深度,由此获得了在撞击速度范围内撞击坑深度与飞片速度、累积撞击次数的关系。通过扫描电镜和透射电镜研究了撞击坑周围的微观组织结构和形貌,发现在撞击坑周围没有形成微空洞、微裂纹、绝热剪切带等缺陷,也没有观测到明显的细化晶粒。此外,X射线衍射谱显示撞击坑周围仍然保持αβ两相结构,但是αβ相变使β相的含量增加。可以认为,新型合金47Zr45Ti5Al3V在超高速撞击后仍具有稳定的组织结构和机械性能,在空间微小碎片环境中具有较好的应用前景。

     

  • 图  激光驱动飞片示意图

    Figure  1.  Schematic illustration of laser driven flyer plates

    图  撞击坑形貌

    Figure  2.  Top views of crater

    图  撞击坑的表面轮廓曲线(8 μm, 5.68 km/s)

    Figure  3.  Profile curve of crater (8 μm, 5.68 km/s)

    图  撞击坑深度与飞片速度的关系

    Figure  4.  Crater depth vs.flyer velocity

    图  撞击坑深度与撞击次数的关系

    Figure  5.  Crater depth vs.impact frequency

    图  撞击坑截面的SEM图像

    Figure  6.  SEM images of crater cross-section in target

    图  撞击坑底部低密度孪晶和位错的TEM图像(7.02 km/s)

    Figure  7.  TEM image showing low density of twins and dislocations under the crater (7.02 km/s)

    图  初始靶(a)和撞击后靶(b)的XRD谱

    Figure  8.  XRD patterns of initial (a) and recovered (b) targets

    表  1  实验参数及实验结果

    Table  1.   Experimental parameters and results

    δ/(μm) m/(μg) v/(km/s) p/(GPa) TH/(K) h/(μm)
    5 11 3.51 41.2 894 3.88
    5 11 4.13 50.4 1181 4.46
    5 11 5.09 68.5 1798 4.57
    5 11 6.14 86.1 2616 6.15
    5 11 7.06 106.4 3720 7.28
    8 17 2.76 31.0 715 3.98
    8 17 3.70 44.7 1015 9.01
    8 17 4.16 52.1 1216 10.30
    8 17 5.68 79.4 2275 19.86
    8 17 7.02 104.5 3658 27.29
    8 17 2.59/2.58 28.7/28.6 644/638 5.45
    8 17 2.57/2.51/2.48 28.4/27.6/27.3 625/609/604 7.88
    8 17 5.72/5.96 79.8/84.4 2293/2526 30.17
    8 17 5.63/5.99/5.96 78.0/82.5/84.4 2220/2418/2526 41.51
    下载: 导出CSV
  • [1] BELK C A, ROBINSON J H, ALEXANDER M B, et al.Meteoroids and orbital debris: effects on spacecraft: NASA-RP-1408[R].Huntsville: NASA Marshall Space Flight Center, 1997.
    [2] POLMEAR I J.Light alloys[M].London:Edward Arnold Publications, 1981.
    [3] JING R, LIANG S X, LIU C Y, et al.Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J].Mat Sci Eng A, 2012, 552:295-300. doi: 10.1016/j.msea.2012.05.043
    [4] LIANG S X, YIN L X, MA M Z, et al.A multi-component Zr alloy with comparable strength and higher plasticity than Zr-based bulk metallic glasses[J].Mat Sci Eng A, 2013, 561:13-16. doi: 10.1016/j.msea.2012.10.061
    [5] KONDO R, SUYALATU, TSUTSUMI Y, et al.Microstructure and mechanical properties of Pt-added and Pd-added Zr-20Nb alloys and their metal release in 1 mass% lactic acid solution[J].Mat Sci Eng C, 2011, 31(5):900-905. doi: 10.1016/j.msec.2011.02.008
    [6] 王杰, 张宏伟, 王爱民, 等.一种新型锆钛合金的动态力学行为研究[J].金属学报, 2012, 48(5):636-640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201491700

    WANG J, ZHANG H W, WANG A M, et al.Investigation of dynamic mechanical behavior of a new Zr-Ti alloy[J].Acta Metallurgica Sinica, 2012, 48(5):636-640. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201201491700
    [7] 刘崧, 覃金贵, 陈荣, 等.新型锆钛合金的动态拉伸力学性能与微观断裂机制试验研究[J].航天器环境工程, 2013, 30(3):310-315. doi: 10.3969/j.issn.1673-1379.2013.03.016

    LIU S, QIN J G, CHEN R, et al.Tests of dynamic tensile properties and microscopic fragment mechanism for a new zirconium-titanium alloy[J].Spacecraft Environment Engineering, 2013, 30(3):310-315. doi: 10.3969/j.issn.1673-1379.2013.03.016
    [8] ZHANG P L, GONG Z Z, JI G F, et al.Shock compression of the new 47Zr45Ti5Al3V alloys up to 200 GPa[J].Chin Phys Lett, 2013, 30(6):066401. doi: 10.1088/0256-307X/30/6/066401
    [9] TANAKA K, NISHIDA M, OGAWA H, et al.Hypervelocity crater formation in aluminum alloys at low temperatures[J].Int J Impact Eng, 2008, 35(12):1821-1826. doi: 10.1016/j.ijimpeng.2008.07.043
    [10] ZHEN L, ZOU D L, XU C Y, et al.Microstructure evolution of adiabatic shear bands in AM60B magnesium alloy under ballistic impact[J].Mat Sci Eng A, 2010, 527(21):5728-5733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8616dcc273388e25ecb18fa15334a612
    [11] MORITOH T, MATSUOKA S, OGURA T, et al.Dynamic failure of steel under hypervelocity impact of polycarbonate up to 9 km/s[J].J Appl Phys, 2003, 93(10):5983-5988. doi: 10.1063/1.1569979
    [12] 曹燕, 牛锦超, 牟永强, 等.CAST激光驱动微小飞片及其超高速撞击效应研究进展[J].航天器环境工程, 2015, 32(2):162-175. doi: 10.3969/j.issn.1673-1379.2015.02.005

    CAO Y, NIU J C, MU Y Q, et al.Recent progresses of laser-driven flyer technique and micro-space debris hypervelocity impact tests in China Academy of Space Technology[J].Spacecraft Environment Engineering, 2015, 32(2):162-175. doi: 10.3969/j.issn.1673-1379.2015.02.005
    [13] 经福谦.实验物态方程导引[M].第2版.北京:科学出版社, 1999.

    JING F Q.Introduction to experimental equation of state[M].2nd ed.Beijing:Science Press, 1999.
    [14] MEYERS M A.Dynamic behavior of materials[M].New York:John Wiley & Sons Inc, 1994.
    [15] HAYASHIDA K B, ROBINSON J H. Single wall penetration equations: NASA-TM-103565 [R].Huntsville: NASA Marshall Space Flight Center, 1991.
    [16] COUR-PALAIS B G.Hypervelocity impact investigations and meteoroid shielding experience related to Apollo and Skylab: NASA-S-82-05009[R].Houston: NASA Johnson Space Center, 1984. https://www.researchgate.net/publication/4673383_Hypervelocity_Impact_Investigations_and_Meteoroid_Shielding_Experience_Related_to_Apollo_and_Skylab
    [17] CHRISTIANSEN E L.Shield sizing and response equations: NASA-TM-105527[R].Houston: NASA Johnson Space Center, 1991.
    [18] LI G A, ZHEN L, LIN C, et al.Deformation localization and recrystallization in TC4 alloy under impact condition[J].Mat Sci Eng A, 2005, 395(1):98-101. http://www.sciencedirect.com/science/article/pii/S0921509304014492
    [19] IYER K A, POORMON K L, DEACON R M, et al.Hypervelocity impact response of Ti-6Al-4V and commercially pure titanium[J].Procedia Engineering, 2013, 58:127-137. doi: 10.1016/j.proeng.2013.05.016
    [20] ZOU D L, ZHEN L, ZHU Y, et al.Deformed microstructure and mechanical properties of AM60B magnesium alloy under hypervelocity impact at a velocity of 4 km·s-1[J].Mat Sci Eng A, 2010, 527(15):3323-3328. doi: 10.1016/j.msea.2010.02.037
    [21] ZOU D L, ZHEN L, ZHU Y, et al.Deformed microstructure evolution in AM60B Mg alloy under hypervelocity impact at a velocity of 5 km·s-1[J].Mater Design, 2010, 31(8):3708-3715. doi: 10.1016/j.matdes.2010.03.010
    [22] SELLARS C M.Recrystallization of metals during hot deformation[J].Phil Trans Roy Soc Lon Ser A, 1978, 288(1350):147-158. doi: 10.1098/rsta.1978.0010
    [23] MURRAY J L.Phase diagrams of binary titanium alloys[M].Materials Park:ASM International, 1987:340.
    [24] KAD B K, GEBERT J M, PEREZ-PRADO M T, et al.Ultrafine-grain-sized zirconium by dynamic deformation[J].Acta Mater, 2006, 54(16):4111-4127. doi: 10.1016/j.actamat.2006.03.053
    [25] KOBAYASHI S, MATSUZAKI A, NAKAI K, et al.Decomposition processes of β phase in a Ti-15Zr-4Nb-4Ta alloy[J].Mater Trans, 2004, 45(5):1624-1628. doi: 10.2320/matertrans.45.1624
    [26] KOBAYASHI S, NAKAGAWA S, NAKAI K, et al.Phase decomposition in a Ti-13Nb-13Zr alloy during aging at 600 ℃[J].Mater Trans, 2002, 43(12):2956-2963. doi: 10.2320/matertrans.43.2956
    [27] MOFFAT D L, LARBALESTIER D C.The compctition between the alpha and omega phases in aged Ti-Nb alloys[J].Metall Trans A, 1988, 19(7):1687-1694. doi: 10.1007/BF02645136
    [28] BORISOVA E A, CHEN S Q.Metallography of titanium alloys[M].Beijing:National Defense Industry Press, 1986:90.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  6584
  • HTML全文浏览量:  2863
  • PDF下载量:  67
出版历程
  • 收稿日期:  2016-11-07
  • 修回日期:  2016-12-23

目录

    /

    返回文章
    返回