Resistance Performance of Grooved Metal Target Subjected to Projectile Impact

TONG Zong-Bao WANG Jin-Xiang LIANG Li QIAN Ji-Sheng TANG Kui

童宗保, 王金相, 梁丽, 钱吉胜, 唐奎. 射弹冲击下带预裂槽金属靶的防护性能研究[J]. 高压物理学报, 2017, 31(2): 103-113. doi: 10.11858/gywlxb.2017.02.002
引用本文: 童宗保, 王金相, 梁丽, 钱吉胜, 唐奎. 射弹冲击下带预裂槽金属靶的防护性能研究[J]. 高压物理学报, 2017, 31(2): 103-113. doi: 10.11858/gywlxb.2017.02.002
TONG Zong-Bao, WANG Jin-Xiang, LIANG Li, QIAN Ji-Sheng, TANG Kui. Resistance Performance of Grooved Metal Target Subjected to Projectile Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 103-113. doi: 10.11858/gywlxb.2017.02.002
Citation: TONG Zong-Bao, WANG Jin-Xiang, LIANG Li, QIAN Ji-Sheng, TANG Kui. Resistance Performance of Grooved Metal Target Subjected to Projectile Impact[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 103-113. doi: 10.11858/gywlxb.2017.02.002

Resistance Performance of Grooved Metal Target Subjected to Projectile Impact

doi: 10.11858/gywlxb.2017.02.002
Funds: 

National Natural Science Foundation of China 11272158

National Natural Science Foundation of China 11672138

Foundation of Science and Technology on Transient Physics Laboratory 9140C300405150C30005

More Information
    Author Bio:

    TONG Zong-Bao(1988—), male, assistant engineer, major in warhead design.E-mail:asnyxun@163.com

    Corresponding author: WANG Jin-Xiang(1978—), male, doctor, professor, major in explosion and impact dynamics.E-mail:wjx@njust.edu.cn
  • 摘要: 采用弹道实验和数值模拟的方法研究了带环形预裂槽的金属靶在射弹冲击下的毁伤模式和防护性能,分析了弹头形状、预裂槽直径及深度等因素对靶板防护性能的影响。结果表明:对带有环形预裂槽的金属靶板,存在两种主要毁伤模式,即环形槽内部的侵彻和环形槽底的冲击断裂;临界毁伤速度与毁伤模式密切相关,随着环形槽深度的增大或半径的变小,临界毁伤速度变小;与尖头弹相比,平头弹的临界毁伤速度更小;微观分析表明,在射弹冲击作用下,环形槽底部产生绝热剪切带,更容易形成充塞剪切破坏。

     

  • Figure  1.  Schematics of tandem warhead and target

    Figure  2.  Schematic and photo of experimental setup

    Figure  3.  Projectile size and grooved steel target

    Figure  4.  FEM calculation model(1/2)

    Figure  5.  Comparison of experimental and numerical results

    Figure  6.  Results of numerical simulation about CDV under different conditions

    Figure  7.  Typical experimental results of targets for different incidence velocities of projectile

    Figure  8.  Typical damage modes of pre-split targets (experimental results)

    Figure  9.  Numerical simulation of stress distribution

    Figure  10.  Microstructure analysis of damage zone near plug edge

    Table  1.   Various experimental conditions

    Projectile D/(mm) L/(mm) Projectile D/(mm) L/(mm)
    Oval projectile 15 4.0
    5.5
    7.0
    Oval projectile 30 4.0
    5.5
    7.0
    20 4.0
    5.5
    7.0
    Flat nose projectile 20 4.0
    5.5
    7.0
    下载: 导出CSV

    Table  2.   Material model parameters of projectile (304L steel) and target (45 steel)[16-17]

    Material A/
    (MPa)
    B/
    (MPa)
    N C M D1 D2 D3 D4 D5
    304L steel 792 510 0.260 0.014 1.03 -0.8 2.10 -0.50 0.002 0.61
    45 steel 507 320 0.064 0.280 1.06 0.1 0.76 1.57 0.085 -0.84
    下载: 导出CSV

    Table  3.   Equation of state parameters of projectile (304L steel) and target (45 steel)[16-17]

    Material ρ0/(g/cm3) S1/(MPa) S2/(MPa) S3/(MPa) γ0 a
    304L steel 7.83 164 294 500 1.16 0.46
    45 steel 7.81 153 271 483 1.12 0.44
    下载: 导出CSV

    Table  4.   Numerical simulation results of damage modes and CDV

    Projectile D/(mm) L/(mm) v0/(m/s) Damage mode
    Oval projectile 0 624 Penetrate
    15 4.0
    5.5
    7.0
    438
    352
    225
    Penetrate
    Penetrate
    Fracture
    20 4.0
    5.5
    7.0
    516
    409
    288
    Penetrate
    Fracture
    Fracture
    30 4.0
    5.5
    7.0
    543
    502
    356
    Penetrate
    Penetrate
    Fracture
    Flat nose projectile 20 4.0
    5.5
    7.0
    386
    377
    358
    Penetrate
    Fracture
    Fracture
    下载: 导出CSV

    Table  5.   Experimental results

    Projectile D/(mm) L/(mm) Mass/(g) v/(m/s) Damage model
    Oval projectile 15 4.0
    5.5
    5.5
    7.0
    7.0
    9.65
    9.65
    9.65
    9.65
    9.65
    396.0
    378.0
    305.0
    260.0
    174.5
    No penetrate
    Fracture
    No fracture
    Fracture
    No fracture
    20 4.0
    4.0
    5.5
    5.5
    9.65
    9.65
    9.65
    9.65
    390.6
    535.0
    523.0
    341.0
    No penetrate
    Penetrate
    Fracture
    No fracture
    30 4.0
    4.0
    5.5
    7.0
    7.0
    9.65
    9.65
    9.65
    9.65
    9.65
    558.0
    471.7
    492.0
    341.0
    374.0
    Penetrate
    No penetrate
    Penetrate
    No fracture
    Critical fracture
    Flat nose projectile 20 4.0
    5.5
    7.0
    7.81
    7.81
    7.81
    374.0
    375.0
    363.0
    No fracture
    Critical fracture
    Fracture
    下载: 导出CSV
  • [1] 董立松, 刘宁, 辛士进, 等.高硬度装甲钢抗弹性能及其机理研究[J].兵器材料科学与工程, 2010, 33(2):76-78. doi: 10.3969/j.issn.1004-244X.2010.02.022

    DONG L S, LIU N, XIN S J, et al.Study on ballistic performance and mechanism of high hardness armor steel[J].Ordnance Material Science and Engineering, 2010, 33(2):76-78. doi: 10.3969/j.issn.1004-244X.2010.02.022
    [2] 李晓源, 时捷, 董瀚.不同强度的40CrNi2Mo钢抗弹性能研究[J].兵器材料科学与工程, 2008, 31(1):14-18. doi: 10.3969/j.issn.1004-244X.2008.01.004

    LI X Y, SHI J, DONG H.Research on ballistic behavior of 40CrNi2Mo steel targets with different strength[J].Ordnance Material Science and Engineering, 2008, 31(1):14-18. doi: 10.3969/j.issn.1004-244X.2008.01.004
    [3] 时捷, 董瀚, 王琪, 等.硬度对装甲钢板抗弹性能的影响[J].钢铁研究学报, 2000, 12(3):36-41. doi: 10.3321/j.issn:1001-0963.2000.03.009

    SHI J, DONG H, WANG Q, et al.Influence of hardness on the ballistic behavior of armor steel plate[J].Journal of Iron and Steel Research, 2000, 12(3):36-41. doi: 10.3321/j.issn:1001-0963.2000.03.009
    [4] SANGOY L, MEUNIER Y, PONT G.Steels for ballistic protection[J].Israel J Technol, 1988, 24:319-326. http://cn.bing.com/academic/profile?id=8e9783ddda52b532c0590c03189e82d6&encoded=0&v=paper_preview&mkt=zh-cn
    [5] 张清华, 李伯龙, 聂祚仁, 等.高速冲击下2519A-T87铝合金微观组织研究[J].科学技术与工程, 2011, 11(15):3413-3416. doi: 10.3969/j.issn.1671-1815.2011.15.012

    ZHANG Q H, LI B L, NIE Z R, et al.Microstructure evolution of 2519A-T87 during projectile impact[J].Science Technology and Engineering, 2011, 11(15):3413-3416. doi: 10.3969/j.issn.1671-1815.2011.15.012
    [6] BALAKRISHNAN M, BALASUBRAMANIAN V, REDDY G M.Micro structural analysis of ballistic tests on welded armor steel joints[J].Metallography, Microstructure & Analysis, 2013, 2:125-139. doi: 10.1007/s13632-013-0069-5
    [7] DUAN Z Q, LI S X, HUANG D W.Microstructures and adiabatic shear band formed by ballistic impact in steels and tungsten alloy[J].Fatigue Fract Eng Mater Struct, 2003, 26:1119-1126. doi: 10.1046/j.1460-2695.2003.00705.x
    [8] ZOU D L, ZHEN L, XU C Y, et al.Characterization of adiabatic shear bands in AM60B magnesium alloy under ballistic impact[J].Mater Charact, 2011, 62(5):496-502. doi: 10.1016/j.matchar.2011.03.003
    [9] ATAPEK S H, KARAGOZ S.Ballistic impact behavior of a tempered bainitic steel against 7.62 mm armour piercing projectile[J].Defence Sci J, 2011, 61(1):81-87. doi: 10.14429/dsj
    [10] HU C J, LEE P Y, CHEN J S.Ballistic performance and microstructure of modified rolled homogeneous armor steel[J].Journal of the Chinese Institute of Engineers, 2002, 25(1):99-107. doi: 10.1080/02533839.2002.9670684
    [11] SASTRY Y B S, BUDARAPU PATTABHI R, KRISHNA Y, et al.Studies on ballistic impact of the composite panels[J].Theor Appl Fract Mech, 2014, 72:2-12. doi: 10.1016/j.tafmec.2014.07.010
    [12] 李金泉, 黄德武, 段占强, 等.穿甲侵彻过程中靶板内绝热剪切带特性及形成原因分析[J].兵工学报, 2005, 26(1):60-63. http://d.old.wanfangdata.com.cn/Periodical/bgxb200501013

    LI J Q, HUANG D W, DUAN Z Q, et al.Analysis on adiabatic shear band characteristic and cause of formation in process of penetration in armor[J].Acta Armamentarii, 2005, 26(1):60-63. http://d.old.wanfangdata.com.cn/Periodical/bgxb200501013
    [13] 段春争, 王敏杰.30CrNi3MoV钢锯齿形切屑中绝热剪切带的微结构特征[J].机械工程材料, 2004, 28(10):16-19. doi: 10.3969/j.issn.1000-3738.2004.10.006

    DUAN C Z, WANG M J.Microstructure characteristic of the adiabatic shear bands in serrated chips of 30CrNi3MoV steel[J].Materials for Mechanical Engineering, 2004, 28(10):16-19. doi: 10.3969/j.issn.1000-3738.2004.10.006
    [14] WITTMAN C L, MEYERS M A, PA H R.Observation of an adiabatic shear band in AISI4340 steel by high-voltage transmission electron microscopy[J].Metallurg Trans A, 1990, 21(2):707-716. doi: 10.1007/BF02671941
    [15] ODESHI A G, AL-AMEERI S, BASSIM M N.Effect of high strain rate on plastic deformation of low allow steel subjected to ballistic impact[J].J Mater Process Tech, 2005, 162/163:385-391. doi: 10.1016/j.jmatprotec.2005.02.157
    [16] ZHOU N, WANG J X, YANG R.Damage mechanism and anti-penetration performance of multi-layered explosively welded plates impacted by spherical projectile[J].Theor Appl Fract Mech, 2012, 60(1):23-30. http://www.sciencedirect.com/science/article/pii/S0167844212000572
    [17] 陈刚, 陈忠富, 徐伟芳, 等.45钢的J-C损伤失效参量研究[J].爆炸与冲击, 2007, 27(2):131-135. doi: 10.3321/j.issn:1001-1455.2007.02.007

    CHEN G, CHEN Z F, XU W F, et al.Investigation on the J-C ductile fracture parameters of 45 steel[J].Explosion and Shock Waves, 2007, 27(2):131-135. doi: 10.3321/j.issn:1001-1455.2007.02.007
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  7297
  • HTML全文浏览量:  2893
  • PDF下载量:  53
出版历程
  • 收稿日期:  2016-04-26
  • 修回日期:  2016-06-28

目录

    /

    返回文章
    返回