应变率和孔隙率对规则多孔钛压缩力学性能的影响

王婧 任会兰 申海艇 宁建国

王婧, 任会兰, 申海艇, 宁建国. 应变率和孔隙率对规则多孔钛压缩力学性能的影响[J]. 高压物理学报, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003
引用本文: 王婧, 任会兰, 申海艇, 宁建国. 应变率和孔隙率对规则多孔钛压缩力学性能的影响[J]. 高压物理学报, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003
WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003
Citation: WANG Jing, REN Hui-Lan, SHEN Hai-Ting, NING Jian-Guo. Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 364-372. doi: 10.11858/gywlxb.2017.00.003

应变率和孔隙率对规则多孔钛压缩力学性能的影响

doi: 10.11858/gywlxb.2017.00.003
基金项目: 

国家自然科学基金 11572049

详细信息
    作者简介:

    王婧(1988—), 女,博士研究生,主要从事多孔材料动力学性能研究.E-mail:wangjing1988@bit.edu.cn

    通讯作者:

    任会兰(1973—), 女,博士,教授,主要从事材料动力学行为研究.E-mail:huilanren@bit.edu.cn

  • 中图分类号: O347; TB34

Effects of Strain Rate and Porosity on the Compressive Behavior of Porous Titanium with Regular Pores

  • 摘要: 采用普通材料测试机和分离式霍普金森压杆(SHPB)实验装置对孔隙规则排布的多孔钛试样进行准静态及动态单轴压缩实验,研究了应变率和孔隙率对多孔钛材料弹性模量、屈服强度和能量吸收能力的影响。结果表明:在不同应变率下,规则多孔钛应力-应变曲线在特定区域均可近似为双线性模型;孔隙率对弹性模量、屈服强度和能量吸收能力有直接影响,屈服强度和能量吸收能力均与应变率相关,并给出了同时考虑孔隙率和应变率对屈服强度影响的经验公式。

     

  • 图  孔隙率为20%的试样照片

    Figure  1.  Picture of titanium sample (porosity 20%)

    图  霍普金森压杆装置示意图

    Figure  2.  Schematic of SHPB

    图  准静态压缩下多孔钛和实体钛的应力-应变曲线

    Figure  3.  Stress-strain curves of porous andsolid titanium under quasi-static loading

    4(a)  动态压缩下孔隙率20%多孔钛试样的应力-应变关系

    4(a).  Stress-strain curves of porous titaniumwith porosity 20% under dynamic loading

    4(c)  动态压缩下孔隙率45%多孔钛试样的应力-应变关系

    4(c).  Stress-strain curves of porous titaniumwith porosity 45% under dynamic loading

    图  不同应变率下孔隙率对试样应力-应变曲线的影响

    Figure  5.  Effect of strain rate and porosity on the stress-strain curve

    图  准静态压缩下试样及其截面变形

    Figure  6.  Deformed porous titanium samples and their cross-section views under quasi-static loading

    图  动态载荷下试件的变形情况

    Figure  7.  Deformed porous titanium samples under dynamic loading

    图  动态载荷下试件截面的变形情况

    Figure  8.  Cross-section views of deformed porous titanium samples under dynamic loading

    4(b)  动态压缩下孔隙率33%多孔钛试样的应力-应变关系

    4(b).  Stress-strain curves of porous titaniumwith porosity 33% under dynamic loading

    图  杨氏模量的实验和拟合结果对比

    Figure  9.  Comparison between experimentaland fitting results of Young's modulus

    图  10  不同应变率及孔隙率下屈服强度的实验(实心符号)和拟合(线)结果对比

    Figure  10.  Comparison between experimental (solid symbols) and fitting (line) results ofyield strength at different strain rates and porosities

    图  11  屈服强度的实验和拟合结果三维对比

    Figure  11.  Three-dimensional comparison between experimental and fitting results of yield strength

    图  12  压缩应变为4%时应变率对能量吸收的影响

    Figure  12.  Energy absorption vs. strain ratefor porous titanium samples at strain 4%

    表  1  不同应变率和孔隙率下失效应变大小顺序

    Table  1.   ize order of failure strain with different porosities and strain rates

    Strain rate/(s-1) Sequence
    600 ε45%fε33%fε20%f
    1 100 ε33%fε20%fε45%f
    1 500 ε33%fε20%fε45%f
    2 100 ε20%fε33%fε45%f
    下载: 导出CSV
  • [1] LI B Y, RONG L J, LI Y Y, et al.Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis:reaction mechanism and anisotropy in pore structure[J]. Acta Mater, 2000, 48(15):3895-3904. doi: 10.1016/S1359-6454(00)00184-1
    [2] KURODA D, NⅡNOMI M, MORINAGA M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J]. Mater Sci Eng A, 1998, 243(1/2):244-249. http://www.sciencedirect.com/science/article/pii/S0921509397008083
    [3] 张俊彦.多孔材料的力学性能及破坏机理[D].湘潭: 湘潭大学, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10530-2006162894.htm

    ZHANG J Y.Mechanical properties and breakage mechanism of cellular materials[D]. Xiangtan: Xiangtan University, 2003. http://cdmd.cnki.com.cn/Article/CDMD-10530-2006162894.htm
    [4] 李煦阳.孔隙类工程材料的静动态力学性能研究和在防护工程中的应用[D].合肥: 中国科学技术大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2698084

    LI X Y.Research on mechanics behavior and defense engineering application of void containing materials[D]. Hefei: University of Science and Technology of China, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2698084
    [5] 汤慧萍, 王建.多孔钛的研究进展[J].中国材料进展, 2014(9):576-585. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201409009

    TANG H P, WANG J.Progress in research and development of porous titanium materials[J]. Materials China, 2014(9):576-585. http://d.old.wanfangdata.com.cn/Periodical/zgcljz201409009
    [6] IQBAL N, XUE P, LIAO H J, et al.Material characterization of porous bronze at high strain rates[J]. Mater Sci Eng A, 2011, 528(13/14):4408-4412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c55a95f3d1e69cc955a815f564e74892
    [7] UPADHYAYA G S.Powder metallurgy technology[M]. Cambridge International Science Publishing, 1997.
    [8] XUE P, IQBAL N, LIAO H J, et al.Experimental study, on strain rate sensitivity of ductile porous irons[J]. Int J Impact Eng, 2012, 48(1):82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c38a571b9838a1472b305bd2b6f07cb0
    [9] WANG B, ZHANG J, LU G.Taylor impact test for ductile porous materials—Part 2:experiments[J]. Int J Impact Eng, 2003, 28(5):499-511. doi: 10.1016/S0734-743X(02)00105-7
    [10] WANG B, KLEPACZKO J R, LU G, et al.Viscoplastic behaviour of porous bronzes and irons[J]. J Mater Process Tech, 2001, 113(1/2/3):574-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ff0244416b6d8da7a287aee4ce15bc47
    [11] LIU X H, HUANG H Y, XIE J X.Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper[J]. Int J Min Met Mater, 2014, 21(7):687-695. doi: 10.1007/s12613-014-0959-9
    [12] HYUN S K, NAKAJIMA H.Fabrication of porous iron by unidirectional solidification in nitrogen atmosphere[J]. Mater Trans, 2002, 43(3):526-531. doi: 10.2320/matertrans.43.526
    [13] WANG X H, LI J, RUI H U, et al.Mechanical properties and pore structure deformation behaviour of biomedical porous titanium[J]. T Nonferr Metal Soc, 2015, 25(5):1543-1550. doi: 10.1016/S1003-6326(15)63756-6
    [14] SCHUEREN B V D, KRUTH J P.Powder deposition in selective metal powder sintering[J]. Rapid Prototyping J, 1995, 1(3):23-31. doi: 10.1108/13552549510094241
    [15] 王永刚, 王春雷.结构特征参数和应变速率对泡沫铝压缩力学性能的影响[J].兵工学报, 2011, 32(1):106-111. http://d.old.wanfangdata.com.cn/Periodical/bgxb201101018

    WANG Y G, WANG C L.Effect of structure characteristic parameters and strain rate on the compressive mechanic properties of aluminum foams[J]. Acta Armamentarii, 2011, 32(1):106-111. http://d.old.wanfangdata.com.cn/Periodical/bgxb201101018
    [16] SIMONE A E, GIBSON L J.The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams[J]. Acta Mater, 1998, 46(11):3929-3935. doi: 10.1016/S1359-6454(98)00072-X
    [17] SIMONE A E, GIBSON L J.Effects of solid distribution on the stiffness and strength of metallic foams[J]. Acta Mater, 1998, 46(6):2139-2150. doi: 10.1016/S1359-6454(97)00421-7
    [18] 牛文娟.多孔钛及其合金的制备及性能研究[D].重庆: 重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-1011265540.htm

    NIU W J.Research on preparation and properties of porous titanium and its alloys[D]. Chongqing: Chongqing University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-1011265540.htm
    [19] 刘培生, 黄林国.多孔金属材料制备方法[J].功能材料, 2002, 33(1):5-8. http://d.old.wanfangdata.com.cn/Periodical/gncl200201002

    LIU P S, HUANG L G.Preparation methods for porous metal materials[J]. Journal of Functional Materials, 2002, 33(1):5-8. http://d.old.wanfangdata.com.cn/Periodical/gncl200201002
    [20] 卢天健, 何德坪, 陈常青, 等.超轻多孔金属材料的多功能特性及应用[J].力学进展, 2006, 36(4):517-535. doi: 10.3321/j.issn:1000-0992.2006.04.004

    LU T J, HE D P, CHEN C Q, et al.The multi-functionality of ultra-light porous metals and their applications[J]. Advances in Mechanics, 2006, 36(4):517-335. doi: 10.3321/j.issn:1000-0992.2006.04.004
    [21] 刘培生.多孔材料孔率的测定方法[J].钛工业进展, 2005, 22(6):34-37. doi: 10.3969/j.issn.1009-9964.2005.06.008

    LIU P S.Determining methods for porosity of porous materials[J]. Titanium Industry Progress, 2005, 22(6):34-37. doi: 10.3969/j.issn.1009-9964.2005.06.008
    [22] LEE O S, KIM M S.Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique[J]. Nucl Eng Des, 2003, 226(2):119-125. doi: 10.1016/S0029-5493(03)00189-4
    [23] 常列珍, 张治民.SHPB实验技术及其发展[J].机械管理开发, 2006(5):29-31. doi: 10.3969/j.issn.1003-773X.2006.05.015

    CHANG L Z, ZHANG Z M.The experiment technology and development of SHPB[J]. Mechanical Management & Development, 2006(5):29-31. doi: 10.3969/j.issn.1003-773X.2006.05.015
    [24] NAKAJIMA H.Porous metals with directional pores[M]. Springer Japan, 2013:151-153.
    [25] TANE M, ICHITSUBO T, HYUN S K, et al.Anisotropic yield behavior of lotus-type porous iron:measurements and micromechanical mean-field analysis[J]. J Mater Res, 2005, 20(1):135-143. doi: 10.1557/JMR.2005.0009
    [26] TANE M, ICHITSUBO T, HIRAO M, et al.Extended mean-field method for predicting yield behaviors of porous materials[J]. Mech Mater, 2007, 39(1):53-63. doi: 10.1016/j.mechmat.2006.02.008
    [27] ARCHIE G E.The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Trans AIME, 1942, 146(1):54-62. doi: 10.2118/942054-G
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  5610
  • HTML全文浏览量:  2210
  • PDF下载量:  5
出版历程
  • 收稿日期:  2017-02-06
  • 修回日期:  2017-03-13

目录

    /

    返回文章
    返回