基于同步辐射的X射线成像技术在静高压研究中的应用

侯琪玥 敬秋民 张毅 刘盛刚 毕延 柳雷

侯琪玥, 敬秋民, 张毅, 刘盛刚, 毕延, 柳雷. 基于同步辐射的X射线成像技术在静高压研究中的应用[J]. 高压物理学报, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016
引用本文: 侯琪玥, 敬秋民, 张毅, 刘盛刚, 毕延, 柳雷. 基于同步辐射的X射线成像技术在静高压研究中的应用[J]. 高压物理学报, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016
HOU Qi-Yue, JING Qiu-Min, ZHANG Yi, LIU Sheng-Gang, BI Yan, LIU Lei. Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016
Citation: HOU Qi-Yue, JING Qiu-Min, ZHANG Yi, LIU Sheng-Gang, BI Yan, LIU Lei. Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016

基于同步辐射的X射线成像技术在静高压研究中的应用

doi: 10.11858/gywlxb.2016.06.016
基金项目: 

中国工程物理研究院流体物理研究所发展基金 SFZ201401(04)01

国家自然科学基金 11304294

详细信息
    作者简介:

    侯琪玥(1987-), 女, 硕士, 研究实习员, 主要从事静高压研究.E-mail:houqiyue@mail.ustc.edu.cn

    通讯作者:

    柳雷(1982-), 男, 硕士, 助理研究员, 主要从事静高压研究.E-mail:leoleu.hp@gmail.com

  • 中图分类号: O521.3;O521.2

Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches

  • 摘要: 随着同步辐射技术的发展,稳定、高强度、能量可调、具有优良相干性的X射线源成为现实,使得X射线成像技术在诸多领域得到了广泛的应用。成像方法也从传统的简单投影成像,发展出相衬成像、显微成像、相干衍射成像等多种实验技术。X射线衍射技术用于测量具有长程周期性的材料在微观尺度的结构信息; 与之相比,X射线成像技术的可视化强,测量直接,可实现各种材料(晶体、非晶体、液体等)从微观、介观到宏观尺度的测量。近年来,X射线成像技术在静高压领域中有了长足的发展,如非晶态材料的物态方程测量、高压加载下的声速测量、熔融铁在地幔岩石中的输运过程研究、晶体材料中的应变分布以及材料相变的演化过程研究等。本文较系统地总结了X射线成像技术在静高压研究领域的应用,以期对今后的研究有所帮助。

     

  • 图  X射线成像的衍射区划分

    Figure  1.  Diffraction zones of the X-ray imaging

    图  X射线投影技术测量密度示意图[14](a),X射线投影成像图[14](b),以及金刚石压机加载下的样品(Pt、NaCl和Fe)、红宝石球和传压介质[17](c)

    Figure  2.  (a) Density measurement using X-ray radiography imaging[14]; (b) simulated X-ray radiography imaging[14]; (c) the sample (Pt, NaCl, Fe), ruby ball and the pressure medium in the diamond anvil cell[17]

    图  Mg2SiO4p-V曲线[18]

    Figure  3.  p-V curve of Mg2SiO4[18]

    图  晶体Sn的p-V曲线[19]

    Figure  4.  p-V curve of crystalline Sn[19]

    图  金属玻璃的p-ρ/ρ0.7 GPa曲线[25]

    Figure  5.  p-ρ/ρ0.7 GPa curve ofmetallic glass[25]

    图  金属玻璃的密度与第一衍射峰位的关系[25]

    Figure  6.  Density vs.the position of the firstdiffraction peak of the metallic glass[25]

    图  无定形Se的p-V曲线(插图反映了无定形Se在结晶过程中的密度变化)[16]

    Figure  7.  p-V curve of the amorphous Se (Theinsert shows how the density changes duringthe crystallization of amorphous Se)[16]

    图  橄榄石-Fe-S样品的相干衍射成像结果[31]

    Figure  8.  Results of coherent diffraction imaging of olivine-Fe-S sample[31]

    图  熔融铁的三维空间分布和二面角统计分布[32]

    Figure  9.  Three-dimensional spatial distribution of molten Fe and the statistical distribution of the dihedral angle[32]

    图  10  高温高压下磷的X射线投影成像图[33]

    Figure  10.  X-ray radiography imaging of P under high pressure and at high temperature[33]

    图  11  不同压力下LPP(红色)和HPP(绿色)的BiNiO3粒子的三维分布(a)二维切片(b)和二维相界(c)[38]

    Figure  11.  Three-dimensional spatial distributions (a), slices (b), and phase boundaries (c)of LPP (red) and HPP (green) of BiNiO3 particles under different pressures[38]

    表  1  典型的X射线成像技术及其技术特点

    Table  1.   Typical X-ray imaging techniques and their properties

    Technique Features Resolution Field of view Facility Large volume press
    Radiography Shadows Dozens of microns Millimeter ESRF Paris-Edinburgh cells
    APS Drickamer anvil cell, Kawai-typeapparatus, D-DIA
    Sping-8 Drickamer anvil cell, Kawai-typeapparatus, DIA, D-DIA
    NSLS DIA
    SSRF, SSRL
    TXM Zone plates 30-100 nm Dozens of microns ESRF, APS, Sping-8, SSRL
    CDI No optics, coherent imaging 1-30 nm Submicron to a few microns ESRF, APS, Sping-8, SSRF
    TXM-XANES Valence states 30-100 nm Dozens of microns SSRL
    Notes:(1) Information concerning the synchrotron radiation facilities listed here is accessible online; the large volume presses are currently used in the corresponding beam-line;
    (2) NSLS:National Synchrotron Light Source at the Brookhaven National Laboratory; D-DIA:A hybrid system using a set of large DIA anvils to compress the Kawai cell; ESRF:European Synchrotron Radiation Facility; APS:Advanced Photon Source; SSRF:Shanghai Synchrotron Radiation Facility; SSRL:Stanford Synchrotron Radiation Lightsource;
    (3) XANES:X-Ray Absorption Near-Edge Spectrum.
    下载: 导出CSV
  • [1] THURING T, ABIS M, WANG Z, et al.X-ray phase-contrast imaging at 100 keV on a conventional source[J].Sci Rep, 2014, 1(1):1-4. http://europepmc.org/articles/PMC4047533
    [2] WILKINS W S, GUREYEV T E, GAO D, et al.Phase-contrast imaging using polychromatic hard X-rays[J].Nature, 1996, 384(28):335-338. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027027199/
    [3] WANG Y, YUN W, JACOBSEN C.Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging[J].Nature, 2003, 424(6944):50-53. doi: 10.1038/nature01756
    [4] MIAO J, CHARALAMBOUS P, KIRZ J, et al.Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J].Nature, 1999, 400(6742):342-344. doi: 10.1038/22498
    [5] TIAN Y, XU B, YU D, et al.Ultrahard nanotwinned cubic boron nitride[J].Nature, 2013, 493(7432):385-388. doi: 10.1038/nature11728
    [6] OVSYANNIKOV S, SHCHENNIKOV V.Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe[J].Appl Phys Lett, 2007, 90(12):122103. doi: 10.1063/1.2715123
    [7] MURAKAMI M, HIROSE K, KAWAMURA K, et al.Post-perovskite phase transition in MgSiO3[J].Science, 2004, 304(5672):855-858. doi: 10.1126/science.1095932
    [8] ZHANG L, MENG Y, YANG W, et al.Disproportionation of (Mg, Fe) SiO3 perovskite in Earth's deep lower mantle[J].Science, 2014, 344(6186):877-882. doi: 10.1126/science.1250274
    [9] CHAPMAN H N, BARTY A, MARCHESINI S, et al.High-resolution ab initio three-dimensional X-ray diffraction microscopy[J].J Opt Soc Am A, 2006, 23(5):1179-1200. doi: 10.1364/JOSAA.23.001179
    [10] KATAYAMA Y.Density measurements of non-crystalline materials under high pressure and high temperature[J].High Pressure Res, 1996, 14(4/5/6):383-391. doi: 10.1080/08957959608201424
    [11] KATAYAMA Y, TSUJI K, CHEN J Q, et al.Density of liquid tellurium under high pressure[J].J Non-Cryst Solids, 1993, 156/157/158:698-690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2393858
    [12] SANLOUP C, GUYOT F, GILLET P, et al.Density measurements of liquid Fe-S alloys at high-pressure[J].Geophys Res Lett, 2000, 27(6):811-814. doi: 10.1029/1999GL008431
    [13] NISHIDA K, OHTANI E, URAKAWA S, et al.Density measurement of liquid FeS at high pressures using synchrotron X-ray absorption[J].Am Mineral, 2011, 96(5/6):864-868. http://adsabs.harvard.edu/abs/2011AmMin..96..864N
    [14] CHEN J, YU T, HUANG S, et al.Compressibility of liquid FeS measured using X-ray radiograph imaging[J].Phys Earth Planet Inter, 2014, 228:294-299. doi: 10.1016/j.pepi.2013.12.012
    [15] HONG X, SHEN G, PRAKAPENKA V B, et al.Density measurements of noncrystalline materials at high pressure with diamond anvil cell[J].Rev Sci Instrum, 2007, 78(10):103905. doi: 10.1063/1.2795662
    [16] LIU H, WANG L, XIAO X, et al.Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography[J].Proc Natl Acad Sci, 2008, 105(36):13229-13234. doi: 10.1073/pnas.0806857105
    [17] XIAO X, LIU H, WANG L, et al.Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques[J].J Synchrotron Rad, 2010, 17(3):360-366. doi: 10.1107/S0909049510008502
    [18] WANG Y, UCHIDA T, WESTFERRO F, et al.High-pressure X-ray tomography microscope:synchrotron computed microtomography at high pressure and temperature[J].Rev Sci Instrum, 2005, 76(7):073709. doi: 10.1063/1.1979477
    [19] WANG J, YANG W, WANG S, et al.High pressure nano-tomography using an iterative method[J].J Appl Phys, 2012, 111(11):112626. doi: 10.1063/1.4726249
    [20] YAVARI A R, MOULEC A L, INOUE A, et al.Excess free volume in metallic glasses measured by X-ray diffraction[J].Acta Mater, 2005, 53(6):1611-1619. doi: 10.1016/j.actamat.2004.12.011
    [21] CADIEN A, HU Q Y, MENG Y Q, et al.First-order liquid-liquid phase transition in cerium[J].Phys Rev Lett, 2013, 110(12):105503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bdc897596abed8670ee202c7ae59fc4
    [22] MIRACLE D B.A structural model for metallic glasses[J].Nat Mater, 2004, 3(10):697-702. doi: 10.1038/nmat1219
    [23] CHENG Y Q, MA E, SHENG H W.Atomic level structure in multicomponent bulk metallic glass[J].Phys Rev Lett, 2009, 102(24):245501. doi: 10.1103/PhysRevLett.102.245501
    [24] MEADE C, HEMLEY R J, MAO H K.High-pressure X-ray diffraction of SiO2 glass[J].Phys Rev lett, 1992, 69(9):1387-1390. doi: 10.1103/PhysRevLett.69.1387
    [25] ZENG Q, KONO Y, LIN Y, et al.Universal fractional noncubic power law for density of metallic glasses[J].Phys Rev Lett, 2014, 112(18):185502. doi: 10.1103/PhysRevLett.112.185502
    [26] LIN Y, ZENG Q, YANG W, et al.Pressure-induced densification in GeO2 glass:a transmission X-ray microscopy study[J].Appl Phys Lett, 2013, 103(26):261909. doi: 10.1063/1.4860993
    [27] CHANTLER C T.Theoretical form factor, attenuation, and scattering tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV[J].J Phys Chem Ref Data, 1995, 24(1):71-643. doi: 10.1063/1.555974
    [28] PAVESE A.Pressure-volume-temperature equations of state:a comparative study based on numerical simulations[J].Phys Chem Miner, 2002, 29(1):43-51. http://gji.oxfordjournals.org/external-ref?access_num=10.1007/s002690100204&link_type=DOI
    [29] ZHU W, GAETANI G A, FUSSEIS F, et al.Microtomography of partially molten rocks:three-dimensional melt distribution in mantle peridotite[J].Science, 2011, 332(6025):88-91. doi: 10.1126/science.1202221
    [30] WARK D A, WATSON E B.Grain-scale permeabilities of texturally equilibrated, monomineralic rocks[J].Earth Planet Sci Lett, 1998, 164(3/4):591-605. http://www.sciencedirect.com/science/article/pii/S0012821X98002520
    [31] JIANG H, XU R, CHEN C, et al.Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution[J].Phys Rev Lett, 2013, 110(20):205501. doi: 10.1103/PhysRevLett.110.205501
    [32] SHI C Y, ZHANG L, YANG W, et al.Formation of an interconnected network of iron melt at Earth's lower mantle conditions[J].Nat Geosci, 2013, 6(11):971-975. doi: 10.1038/ngeo1956
    [33] KATAYAMA Y, INAMURA Y, MIZUTANI T, et al.Macroscopic separation of dense fluid phase and liquid phase of phosphorus[J].Science, 2004, 306(5697):848-851. doi: 10.1126/science.1102735
    [34] SENDA Y, SHIMOJO F, HOSHINO K.The metal-nonmetal transition of liquid phosphorus by ab initio molecular-dynamics simulations[J].J Phys Condens Matter, 2002, 14(14):3715-3723. doi: 10.1088/0953-8984/14/14/304
    [35] HOHL D, JONES R O.Polymerization in liquid phosphorus:simulation of a phase transition[J].Phys Rev B, 1994, 50(23):17047. doi: 10.1103/PhysRevB.50.17047
    [36] AZUMA M, CHEN W, SEKI H, et al.Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer[J].Nat Commun, 2011, 2(6):347-351. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3156814
    [37] LIU Y, WANG J, AZUMA M, et al.Five-dimensional visualization of phase transition in BiNiO3 under high pressure[J].Appl Phys Lett, 2014, 104(4):043108. doi: 10.1063/1.4863229
    [38] MEIRER F, CABANA J, LIU Y, et al.Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy[J].J Synchrotron Rad, 2011, 18(5):773-781. doi: 10.1107/S0909049511019364
    [39] LI J, CAO Y, XIA C, et al.Similarity of wet granular packing to gels[J].Nat Commun, 2014, 5(9):1-7. http://www.ncbi.nlm.nih.gov/pubmed/25247441
    [40] ZACCARELLI E, LU P J, CIULLA F, et al.Gelation as arrested phase separation in short-ranged attractive colloid-polymer mixtures[J].J Phys Condens Matter, 2008, 20(49):494242. doi: 10.1088/0953-8984/20/49/494242
    [41] ROYALL C P, WILLIAMS S R, OHTSUKA T, et al.Direct observation of a local structural mechanism for dynamic arrest[J].Nat Mater, 2008, 7(7):556-561. doi: 10.1038/nmat2219
    [42] URAKAWA S, TERASAKI H, FUNAKOSHI K, et al.Radiographic study on the viscosity of the Fe-FeS melts at the pressure of 5 to 7 GPa[J].Am Mineral, 2001, 86(4):578-582.
    [43] KONO Y, PARK C, KENNEY-BENSON C, et al.Toward comprehensive studies of liquids at high pressures and high temperatures:combined structure, elastic wave velocity, and viscosity measurements in the Paris-Edinburgh cell[J].Phys Earth Planet Inter, 2014, 228:269-280. doi: 10.1016/j.pepi.2013.09.006
    [44] FUNAKOSHI K, NOZAWA A.Development of a method for measuring the density of liquid sulfur at high pressures using the falling-sphere technique[J].Rev Sci Instrum, 2012, 83(10):103908. doi: 10.1063/1.4757570
    [45] LI B, KUNG J, LIEBERMANN R C.Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus[J].Phys Earth Planet Inter, 2004, 143/144:559-574. doi: 10.1016/j.pepi.2003.09.020
    [46] LARSON B C, YANG W, ICE G E, et al.Three-dimensional X-ray structural microscopy with submicrometre resolution[J].Nature, 2002, 415(6874):887-890. doi: 10.1038/415887a
    [47] YANG W, HUANG X, HARDER R, et al.Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure[J].Nat Commun, 2009, 8(4):291-298. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3644065
    [48] SHPYRKO O G, ISAACS E D, LOGAN J M, et al.Direct measurement of antiferromagnetic domain fluctuations[J].Nature, 2007, 447(3):68-71. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0702265
    [49] TRIGO M, FUCHS M, CHEN J, et al.Fourier-transform inelastic X-ray scattering from time-and momentum-dependent phonon-phonon correlations[J].Nat Phys, 2013, 9(12):790-794. doi: 10.1038/nphys2788
    [50] XU J A, MAO H K, HEMLEY R J, et al.The moissanite anvil cell:a new tool for high-pressure research[J].J Phys Condens Matter, 2002, 14(44):11543-11548. doi: 10.1088/0953-8984/14/44/513
    [51] MAO H K, XU J, STRUZHKIN V V, et al.Phonon density of states of iron up to 153 gigapascals[J].Science, 2001, 292(5518):914-916. doi: 10.1126/science.1057670
    [52] URAKAWA S, TERASAKI H P, FUNAKOSHI K, et al.Development of high pressure apparatus for X-ray microtomography at Spring-8[J].J Phys Conf Ser, 2010, 215(1):012026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000690710
    [53] MIAO J, FORSTER F, LEVI O.Equally sloped tomography with oversampling reconstruction[J].Phys Rev B, 2005, 72(5):052103. doi: 10.1103/PhysRevB.72.052103
    [54] FAHIMIAN B, MAO Y, CLOETENS P, et al.Low-dose X-ray phase-contrast and absorption CT using equally sloped tomography[J].Phys Med Biol, 2010, 55(18):5383-5400. doi: 10.1088/0031-9155/55/18/008
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  7578
  • HTML全文浏览量:  3003
  • PDF下载量:  114
出版历程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-06-09

目录

    /

    返回文章
    返回