高压下钼的声子色散的改进分析型嵌入原子法研究

张晓军 王安祥 高宾 陈长乐

张晓军, 王安祥, 高宾, 陈长乐. 高压下钼的声子色散的改进分析型嵌入原子法研究[J]. 高压物理学报, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012
引用本文: 张晓军, 王安祥, 高宾, 陈长乐. 高压下钼的声子色散的改进分析型嵌入原子法研究[J]. 高压物理学报, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012
ZHANG Xiao-Jun, WANG An-Xiang, GAO Bin, CHEN Chang-Le. Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012
Citation: ZHANG Xiao-Jun, WANG An-Xiang, GAO Bin, CHEN Chang-Le. Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 258-264. doi: 10.11858/gywlxb.2016.03.012

高压下钼的声子色散的改进分析型嵌入原子法研究

doi: 10.11858/gywlxb.2016.03.012
基金项目: 

国家自然科学基金 61078057

陕西省教育厅科研计划项目 14JK1301

详细信息
    作者简介:

    张晓军(1980—),男,博士研究生,主要从事高压凝聚态物理的研究.E-mail:xiaoj_zhang@126.com

  • 中图分类号: O521.2

Phonon Dispersion of Molybdenum under High-Pressure:A Study by Modified Analytic Embedded Atom Method

  • 摘要: 应用改进分析型嵌入原子法模型计算了不同高压下金属钼的原子力常数和动力学矩阵,重现了压强下金属钼沿[00ζ]、[0ζζ]和[ζζζ]3个高对称方向上声子色散的实验结果,预测了钼在压强分别为60、80和100 GPa时的声子色散曲线。结果表明:压强分别为0.1 MPa、17 GPa和37 GPa时金属钼的声子色散曲线的模拟结果和实验值符合较好,特别在低频附近二者几乎一致,而在布里渊区的边界点附近,两者在数值上略有差异;在压强分别为60、80和100 GPa时所预测的声子色散曲线和常压下声子色散曲线的形状都非常相似;高压下所有振动支的振动频率均高于常压下的振动频率,且振动频率随压强的增大而增大。

     

  • 图  体心立方晶体结构

    Figure  1.  Bcc crystal structure

    图  金属钼的压强和体积间的关系

    Figure  2.  Pressure versus volume for Mo

    图  常压下钼的声子色散曲线

    Figure  3.  Phonon dispersion curves of Mo under normal pressures

    图  压强p=17 GPa时钼的声子色散曲线

    Figure  4.  Phonon dispersion curves of Mo at 17 GPa

    图  压强p=37 GPa时钼的声子色散曲线

    Figure  5.  Phonon dispersion curves of W at 37 GPa

    图  不同高压下钼的声子色散曲线

    Figure  6.  Phonon dispersion curves of Mo under different high pressures

    图  不同简约波矢的声子频率和压强之间的关系

    Figure  7.  Phonon frequencies versus pressures at different reduced wave vectors

    表  1  金属钼的模型参数

    Table  1.   The model parameters of metal Mo

    n F0/(eV) α/(eV) k-1/(eV) k0/(eV) k1/(eV) k2/(eV) k3/(eV) k4/(eV)
    0.52 3.72 0.0475 1071.46 -4872.40 8859.23 -8045.30 3644.56 -658.07
    下载: 导出CSV
  • [1] XIE Y, ZHANG J M.Atomistic simulation of phonon dispersion for body-centred cubic alkali metals[J].Can J Phys, 2008, 86(6):801-805. doi: 10.1139/p07-200
    [2] WANG Y, HECTOR L G, ZHANG H, et al.Thermodynamics of the Ce γ-α transition:Density functional study[J].Phys Rev B, 2008, 78(10):104113. doi: 10.1103/PhysRevB.78.104113
    [3] WONG J, KRISCH M, FARBER D L, et al.Crystal dynamics of fcc Pu-Ga alloy by high-resolution inelastic X-ray scattering[J].Phys Rev B, 2005, 72(6):064115. doi: 10.1103/PhysRevB.72.064115
    [4] ADITYA M V.Phonon dispersion in equiatomic Li-based binary alloys[J].Chin Phys Lett, 2008, 25(2):654-657. doi: 10.1088/0256-307X/25/2/081
    [5] DANIEL L F, KRISCH M, ANTONANGELI D, et al.Lattice dynamics of molybdenum at high pressure[J].Phys Rev Lett, 2006, 96(4):115502. http://www.ncbi.nlm.nih.gov/pubmed/16605838
    [6] MITTAL R, CHAPLOT S L, CHOUDHURY N, et al.Inelastic neutron scattering, lattice dynamics and high-pressure phase stability in LuPO4 and YbPO4[J].J Phys-Condens Mat, 2007, 19(44):6202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4268e7dd9fe2916f69dad9da7e674e6b
    [7] FANG H, LIU B, GU M.High-pressure lattice dynamic and thermodynamic properties of Ir by first-principles calculation[J].Physica B, 2010, 405(2):732-737. doi: 10.1016/j.physb.2009.09.096
    [8] HU C E, ZENG Z Y, ZHANG L.Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal[J].J Appl Phys, 2010, 107(9):093509. doi: 10.1063/1.3407560
    [9] KAZANC S.The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy[J].Can J Phys, 2013, 91(10):833-838. doi: 10.1139/cjp-2013-0090
    [10] ZHANG X J, CHEN C L, FENG F L.High-pressure phonon dispersion of copper by using the modified analytic embedded atom method[J].Chin Phys B, 2013, 22(9):096301. doi: 10.1088/1674-1056/22/9/096301
    [11] MORSE P M.Diatomic molecules according to the wave mechanics.Ⅱ.Vibrational levels[J].Phys Rev, 1929, 34(1):57-64. doi: 10.1103/PhysRev.34.57
    [12] MURRELL J N, SORBIE K S.New analytic form for potential energy curves of stable diatomic states[J].J Chem Soc Faraday Trans, 1974, 70(2):1552-1556. doi: 10.1039-f29848001349/
    [13] SEBETCI A.A density functional study of bare and hydrogenated platinum clusters[J].Chem Phys, 2006, 331(1):9-18. doi: 10.1016/j.chemphys.2006.09.037
    [14] DAW M S, BASKES M I.Embedded atom method:A review derivation and application to impurities, surface and other defects in metals[J].Phys Rev B, 1984, 29(12):6443-6447. doi: 10.1103/PhysRevB.29.6443
    [15] BOYKIN T B, VOGL P.Dielectric response of molecules in empirical tight-binding theory[J].Phys Rev B, 2002, 65(3):035202. doi: 10.1103/PhysRevE.65.035202
    [16] OUYANG Y F, ZHANG B W.Analytic embedded atom potentials for bcc metals:application to calculating the thermodynamic data of bcc alloys[J].Phys Lett A, 1994, 192(1):79-86. doi: 10.1016/0375-9601(94)91020-0
    [17] HU W Y, SHU X L, ZHANG B W.Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials[J].Comput Mater Sci, 2002, 23(1):175-189. doi: 10.1016-S0927-0256(01)00238-5/
    [18] MA F, ZHANG J M, XU K W.Theoretical analysis of interface energy for unrelaxed Ag (001)/Ni (001) twist interface boundaries with MAEAM[J].Surf Interface Anal, 2004, 36(4):355-359. doi: 10.1002/(ISSN)1096-9918
    [19] ZHANG J M, WEI X M, XIN H, et al.Atomic scale calculation of energies of Cu (001) twist boundaries[J].Chin Phys, 2004, 14(5):1015-1020. http://www.cqvip.com/qk/85823A/200505/15563507.html
    [20] DOVE M T.Introducton to lattice dynamics[M].New York:Cambridge University Press, 1993.
    [21] KAZANC S, OZGEN S.Pressure effect on phonon frequencies in some transition metals:A molecular dynamics study[J].Physica B, 2005, 365(1/2/3/4):185-192. http://www.sciencedirect.com/science/article/pii/S0921452605007635
    [22] KAZANC S, OZGEN S, ADIGUZEL O.Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy[J].Physica B, 2003, 334(3/4):375-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25e1c91a62a84acdf6f72ed0a0c18520
    [23] ROSE J H, SMITH J R, GUINEA F, et al.Universal features of the equation of state of metals[J].Phys Rev B, 1984, 29(6):2963-2969. doi: 10.1103/PhysRevB.29.2963
    [24] VINET P, ROSE J H, FERRANTE J, et al.Universal features of the equation of state of solids[J].J Phys-Condens Mat, 1989, 1(11):1941-1963. doi: 10.1088/0953-8984/1/11/002
    [25] MAO H K, BELL P M, SHANER J W, et al.Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J].J Appl Phys, 1978, 49(6):3276-3283. doi: 10.1063/1.325277
    [26] WOODS A D B, CHEN S H.Lattice dynamics of molybdenum[J].Solid State Commun, 1964, 2(8):233-242. doi: 10.1016/0038-1098(64)90370-9
    [27] FARBER D L, KRISCH M, ANTONANGELI D, et al.Lattice dynamics of molybdenum at high pressure[J].Phys Rev Lett, 2006, 96(11):115502. doi: 10.1103/PhysRevLett.96.115502
    [28] ZHANG X J, CHEN C L.Pressure dependence of phonon dispersion in bcc tungsten[J].Chin J Phys, 2013, 51(2):359-367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7628db22f842d9ea10399b2de6b9f39b
    [29] TAIOLI S, CAZORLA C, GILLAN M J, et al.Melting curve of tantalum from first principles[J].Phys Rev B, 2007, 75(21):214103. doi: 10.1103/PhysRevB.75.214103
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  6598
  • HTML全文浏览量:  2515
  • PDF下载量:  169
出版历程
  • 收稿日期:  2014-06-26
  • 修回日期:  2014-11-01

目录

    /

    返回文章
    返回