锥形弹丸超高速撞击防护屏的碎片云特性参数研究

刘先应 盖芳芳 李志强 王志华

刘先应, 盖芳芳, 李志强, 王志华. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究[J]. 高压物理学报, 2016, 30(3): 249-257. doi: 10.11858/gywlxb.2016.03.011
引用本文: 刘先应, 盖芳芳, 李志强, 王志华. 锥形弹丸超高速撞击防护屏的碎片云特性参数研究[J]. 高压物理学报, 2016, 30(3): 249-257. doi: 10.11858/gywlxb.2016.03.011
LIU Xian-Ying, GAI Fang-Fang, LI Zhi-Qiang, WANG Zhi-Hua. Characteristic Parameters of Debris Cloud Produced by HypervelocityImpact of Conical Projectiles on Spacecraft Shield[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249-257. doi: 10.11858/gywlxb.2016.03.011
Citation: LIU Xian-Ying, GAI Fang-Fang, LI Zhi-Qiang, WANG Zhi-Hua. Characteristic Parameters of Debris Cloud Produced by HypervelocityImpact of Conical Projectiles on Spacecraft Shield[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 249-257. doi: 10.11858/gywlxb.2016.03.011

锥形弹丸超高速撞击防护屏的碎片云特性参数研究

doi: 10.11858/gywlxb.2016.03.011
基金项目: 

国家自然科学基金 11072166

国家自然科学基金 11390362

详细信息
    作者简介:

    刘先应(1990—), 男,硕士研究生,主要从事冲击动力学研究.E-mail:liuxianying1990@163.com

    通讯作者:

    李志强(1973—), 男,博士,教授,主要从事爆炸冲击动力学研究.E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O347;V423.42

Characteristic Parameters of Debris Cloud Produced by HypervelocityImpact of Conical Projectiles on Spacecraft Shield

  • 摘要: 空间碎片在撞击航天器防护结构时会产生碎片云,而碎片云又将对航天器造成二次损伤,因此很有必要针对不同形状的空间碎片超高速撞击产生的二次碎片云特性进行研究。选取航空材料Al 2017-T4、Al 2A12作为弹丸和防护屏材料,采用非线性动力学分析软件AUTODYN-2D结合光滑质点流体动力学方法,对不同长径比的锥形弹丸分别以锥底和锥尖超高速正撞击单层防护屏薄板所产生的碎片云特性进行数值模拟,得到了碎片云的前端轴向速度、径向直径、轴向长度及穿孔直径等特性参数随弹丸撞击部位及长径比变化的规律。

     

  • 图  靶板厚度为0.5mm、撞击速度为4.24km/s时的实验与模拟结果对比

    Figure  1.  Comparison between experimental and simulation results with target thickness of0.5mm and striking velocity of 4.24km/s

    图  靶板厚度为1.0mm、撞击速度为4.25km/s时的实验与模拟结果对比

    Figure  2.  Comparison between experimental and simulation results with target thickness of1.0mm and striking velocity of 4.25km/s

    图  靶板厚度为1.5mm、撞击速度为2.25km/s时的实验与模拟结果对比

    Figure  3.  Comparison between experimental and simulation results with target thickness of1.5mm and striking velocity of 2.25km/s

    图  靶板厚度为1.5mm、撞击速度为3.05km/s时的实验与模拟结果对比

    Figure  4.  Comparison between experimental and simulation results with target thickness of1.5mm and striking velocity of 3.05km/s

    图  特征点设置位置

    Figure  5.  Location of the feature points

    图  计算模型及分析示意图

    Figure  6.  Computation models and their schematic diagram

    图  不同长径比的锥形弹丸锥底撞击碎片云各项特征参数曲线图

    Figure  7.  Characteristic parameters of the debris clouds impacted by projectiles withdifferent length-radius ratios in the direction of cone bottom

    图  锥形弹丸上各参考点的速度随长径比变化曲线图

    Figure  8.  Velocity curves of the reference points with different length-radius ratios

    图  不同长径比的锥形弹丸锥尖撞击碎片云各项特征参数曲线图

    Figure  9.  Characteristic parameters of the debris clouds impacted by projectiles withdifferent length-radius ratios in the tip direction of cone

    图  10  锥形弹丸上各参考点的速度随长径比变化曲线图

    Figure  10.  Velocity curves of the reference points with different length-radius ratios

    表  1  数值模拟与实验所得的特征点轴向速度的比较

    Table  1.   Comparison between experimental and simulation results for the axial velocity of the feature points

    Targetthickness/(mm) Impactvelocity/(km/s) Axial velocity of featurepoints in experiments Axial velocity of featurepoints in simulation Relative error
    vA/(km/s) vB/(km/s) vA/(km/s) vB/(km/s) εA/(%) εB/(%)
    1.0 2.27 1.8944 1.8963 1.9670 1.9656 3.83 3.65
    1.0 3.02 2.5110 2.4959 2.6038 2.6652 3.69 5.97
    1.0 3.23 2.7233 2.6488 2.8262 2.8069 3.78 5.97
    1.0 3.78 3.2429 3.1478 3.3634 3.2769 3.72 4.10
    1.0 4.25 3.4645 3.5212 3.5440 3.5864 2.29 1.85
    1.0 5.04 4.3724 4.1780 4.5747 4.3196 4.63 3.39
    Note:(1)vA is the leading speed of debris clouds (feature point A), and vB is the marginal speed in the forepart ofdebris clouds with larger density (feature point B);
    (2)vAvB are the speed of identical feature points in numerical simulation, and εA, εB are their relative errors.
    下载: 导出CSV

    表  2  锥形弹丸数值模拟工况列表[12]

    Table  2.   Numerical simulation condition list of conical projectile[12]

    α Size of projectile
    L/(mm) D/(mm)
    0.1 1.6287 16.287
    0.2 2.5860 12.930
    0.3 3.3870 11.290
    0.4 4.1040 10.260
    0.6 5.3778 8.965
    0.8 6.5144 8.143
    1.0 7.5600 7.560
    2.0 12.00 6.00
    3.0 15.72 5.24
    4.0 19.04 4.76
    6.0 24.96 4.16
    8.0 30.24 3.78
    10.0 35.10 3.51
    下载: 导出CSV

    表  3  不同长径比锥形弹丸锥底撞击形成碎片云的数值模拟结果

    Table  3.   Simulation results of debris clouds impacted by projectiles with differentlength-radius ratios in the direction of cone bottom

    α Axial velocity of tip particle/(km/s) Radial dimension/(mm) Axial length/(mm) Hole diameter/(mm)
    0.1 3.5806 32.278 81.698 16.6684
    0.2 5.7305 40.598 83.818 16.3250
    0.3 5.7340 48.956 83.614 15.7526
    0.4 5.8275 58.518 84.838 15.0956
    0.6 5.6250 64.774 82.353 13.0844
    0.8 5.6505 64.190 82.713 12.7602
    1.0 5.8398 66.592 85.374 11.4076
    2.0 5.9357 59.242 86.927 10.2376
    3.0 5.4453 61.584 79.821 9.4718
    4.0 5.3586 58.646 78.555 9.3768
    6.0 5.6946 61.042 83.393 8.2540
    8.0 6.3262 60.396 92.558 8.1754
    10.0 5.0978 52.116 74.844 7.7512
    下载: 导出CSV

    表  4  不同长径比锥形弹丸锥尖撞击形成碎片云的数值模拟结果

    Table  4.   Simulation results of debris clouds impacted by projectiles with differentlength-radius ratios in the direction of cone tip

    α Axial velocityof tip particle/(km/s) Radialdimension/(mm) Axiallength/(mm) Holediameter/(mm)
    0.1 5.1649 32.668 74.712 17.4712
    0.2 5.0323 42.228 72.807 15.9812
    0.3 5.2247 41.984 75.539 14.9206
    0.4 5.2867 40.692 76.167 13.6632
    0.6 4.9368 42.636 70.328 12.2956
    0.8 4.9753 53.804 71.124 11.5832
    1.0 4.8459 54.040 68.735 10.5408
    2.0 4.8739 56.954 69.467 7.3228
    3.0 5.0391 50.260 71.127 6.8314
    4.0 5.0389 49.238 70.679 5.6080
    6.0 5.1722 45.580 72.102 4.5636
    8.0 5.0962 40.692 71.175 3.7760
    10.0 5.0747 35.790 70.789 3.7154
    下载: 导出CSV
  • [1] 闵桂荣, 肖名鑫.防止微流星击穿航天器舱壁的可靠性设计[J].中国空间科学技术, 1986(6):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198606005.htm

    MIN G R, XIAO M X.Reliability design spacecraft module wall against meteoroid perforation[J].Chinese Space Science and Technology, 1986(6):45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKJ198606005.htm
    [2] 张伟, 庞宝君, 邹经湘, 等.航天器微流星体及空间碎片防护方案[J].哈尔滨工业大学学报, 1999, 32(2):18-22. doi: 10.3321/j.issn:0367-6234.1999.02.006

    ZHANG W, PANG B J, ZOU J X, et al.Meteoroid and space shielding concepts for spacecraft[J].Journal of Harbin Institute of Technology, 1999, 32(2):18-22. doi: 10.3321/j.issn:0367-6234.1999.02.006
    [3] 董洪建, 童靖宇, 黄本诚.真空环境下空间碎片超高速撞击试验研究[J].真空科学与技术学报, 2004, 24(2):109-112. doi: 10.3969/j.issn.1672-7126.2004.02.007

    DONG H J, TONG J Y, HUANG B C.Impact simulation of hypervelocity space debris in vacuum environment[J].Vacuum Science and Technology, 2004, 24(2):109-112. doi: 10.3969/j.issn.1672-7126.2004.02.007
    [4] 曲广吉, 韩增尧.空间碎片超高速撞击动力学建模与数值仿真技术[J].中国空间科学技术, 2002, 22(5):26-29. doi: 10.3321/j.issn:1000-758X.2002.05.005

    QU G J, HAN Z Y.Dynamical modeling and numerical simulation of hypervelocity space debris impact[J].Chinese Space Science and Technology, 2002, 22(5):26-29. doi: 10.3321/j.issn:1000-758X.2002.05.005
    [5] 何茂坚. 球形弹丸超高速正撞击薄铝板碎片云特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    HE M J.Characteristics of debris cloud produced by normal hypervelocity impact of spherical projectile with thin aluminum plate[D].Harbin:Harbin Institute of Technology, 2007.
    [6] CORVONATO E, DESTEFANIS R, FARAUD M.Integral model for the description of the debris cloud structure and impact[J].Int J Impact Eng, 2001, 26(1):115-128. http://www.sciencedirect.com/science/article/pii/S0734743X01000744
    [7] 盖芳芳, 刘先应, 刘恂, 等.圆柱形弹丸高速撞击薄板的碎片云特性数值模拟[J].黑龙江科技学院学报, 2013(6):600-604. http://d.old.wanfangdata.com.cn/Periodical/hljkyxyxb201306022

    GAI F F, LIU X Y, LIU X, et al.Numerical simulation on characteristics of debris clouds produced by cylindrical projectile hypervelocity impact on thin plates[J].Journal of Heilongjiang Institute of Science & Technology, 2013(6):600-604. http://d.old.wanfangdata.com.cn/Periodical/hljkyxyxb201306022
    [8] 张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理, 1996, 13(4):385-397. http://cdmd.cnki.com.cn/Article/CDMD-10217-2007119005.htm

    ZHANG S C.Smoothed particle hydrodynamics (SPH) method (overview)[J].Chinese Journal of Computational Physics, 1996, 13(4):385-397. http://cdmd.cnki.com.cn/Article/CDMD-10217-2007119005.htm
    [9] AUTODYN user's manual revision 6.0[M].Concord, California, USA:Century Dynamics Incorporated, 2005.
    [10] AUTODYN user's manual revision 4.3[M].Concord, California, USA:Century Dynamics Incorporated, 2003.
    [11] 迟润强. 弹丸超高速撞击薄板碎片云建模研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    CHI R Q.Research and modeling of debris cloud produced by hypervelocity impact of projectile with thin plate[D].Harbin:Harbin Institute of Technology, 2010.
    [12] LIU X, GAI F F, CHENG S.Numerical simulation on characteristics of debris clouds produced by conical projectiles hypervelocity impact on thin plates[J].Int J Hybrid Inf Technol, 2015, 8(6):79-86. doi: 10.14257/ijhit
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  7007
  • HTML全文浏览量:  3066
  • PDF下载量:  65
出版历程
  • 收稿日期:  2015-04-03
  • 修回日期:  2015-06-08

目录

    /

    返回文章
    返回