Gaseous Detonation Synthesis of Carbon-Encapsulated Iron Nanoparticles

YAN Hong-Hao ZHAO Tie-Jun LI Xiao-Jie WANG Xiao-Hong

闫鸿浩, 赵铁军, 李晓杰, 王小红. 碳包覆铁纳米颗粒的气相爆轰合成[J]. 高压物理学报, 2016, 30(3): 207-212. doi: 10.11858/gywlxb.2016.03.005
引用本文: 闫鸿浩, 赵铁军, 李晓杰, 王小红. 碳包覆铁纳米颗粒的气相爆轰合成[J]. 高压物理学报, 2016, 30(3): 207-212. doi: 10.11858/gywlxb.2016.03.005
YAN Hong-Hao, ZHAO Tie-Jun, LI Xiao-Jie, WANG Xiao-Hong. Gaseous Detonation Synthesis of Carbon-Encapsulated Iron Nanoparticles[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 207-212. doi: 10.11858/gywlxb.2016.03.005
Citation: YAN Hong-Hao, ZHAO Tie-Jun, LI Xiao-Jie, WANG Xiao-Hong. Gaseous Detonation Synthesis of Carbon-Encapsulated Iron Nanoparticles[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 207-212. doi: 10.11858/gywlxb.2016.03.005

Gaseous Detonation Synthesis of Carbon-Encapsulated Iron Nanoparticles

doi: 10.11858/gywlxb.2016.03.005
Funds: 

National Science Foundation of China 10872044

National Science Foundation of China 10602013

National Science Foundation of China 10972051

National Science Foundation of China 10902023

Natural Science Foundation of Liaoning Province of China 20082161

More Information
    Author Bio:

    YAN Hong-Hao (1975—), male, Doctor, associate professor, major in gaseous detonation synthesizing nano materials.E-mail:923309973@qq.com

  • 摘要: 以粉末状与气态二茂铁为原料,以氢气和氧气混合气体为爆轰能源,采用气相爆轰法进行了合成碳包覆铁纳米颗粒实验。 XRD和TEM实验结果表明,采用两种不同状态的二茂铁,均得到了纳米碳包覆铁颗粒。 该包覆颗粒的组成核为铁或铁碳化合物,外层壳主要由石墨碳组成,大部分球形纳米颗粒尺寸分布于5~30nm 之间。 通过对比发现,采用气态二茂铁爆轰时,所得到的碳包铁粒度分布较为集中,壳层厚度比较均匀,且粒子具有较好的球形状。最后结合铁碳合金相图,从热处理角度对气相爆轰合成碳包覆铁纳米颗粒的机理进行了分析,得出产物中α-Fe与Fe3C的形成过程。 分析了碳包覆铁纳米颗粒的磁滞回线,其表现出硬磁性与顺磁性双重性质。

     

  • Figure  1.  Schematic diagram of the detonation tube

    Figure  2.  TEM images of particles obtained by detonation of solid ferrocene

    Figure  3.  TEM images of particles obtained by detonation of gaseous ferrocene

    Figure  4.  XRD pattern of the gaseous detonation products

    Figure  5.  Iron-carbon alloy phase diagram

    Figure  6.  The magnetic hysteresis loops of the sample

    Table  1.   Molar amount of each atom before and after the reaction

    Time H/(mol) O/(mol) C/(mol) Fe/(mol)
    Before reaction 0.536 0.348 0.188 0.018 8
    After reaction 0 0 0.180 0.018 8
    下载: 导出CSV

    Table  2.   Magnetic analysis of the samples

    No. Ms/(A·m2/kg) Mr/(A·m2/kg) Hc/[(250/π)A/m] Mr/Ms
    1 84.70 8.22 142 0.097
    下载: 导出CSV
  • [1] CHARINPANITKUL T, TANTHAPANICHAKOON W, SANO N.Carbon nanostructures synthesized by arc discharge between carbon and iron electrodes in liquid nitrogen [J].Current Appl Phys, 2009, 9(3):629-632. doi: 10.1016/j.cap.2008.05.018
    [2] EL-GENDY A A, IBRAHIM E M M, KHAVRUS V O, et al.The synthesis of carbon coated Fe, Co and Ni nanoparticles and an examination of their magnetic properties [J].Carbon, 2009, 47(12):2821-2828. doi: 10.1016/j.carbon.2009.06.025
    [3] RADHAKRISHNAN G, ADAMS P M, BERNSTEIN L S.Room-temperature deposition of carbon nanomaterials by excimer laser ablation [J].Thin Solid Films, 2006, 515(3):1142-1146. doi: 10.1016/j.tsf.2006.07.120
    [4] WU W Z, ZHU Z P, LIU Z Y, et al.Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method [J].Carbon, 2003, 41(2):317-321. doi: 10.1016/S0008-6223(02)00292-0
    [5] STAVER A M, GUBAREVA N V, LYAMKIN A I, et al.Ultrafine diamond powders made by the use of explosion energy [J].Combust Explos Shock, 1984, 20(5):567-570. doi: 10.1007/BF00782253
    [6] BELOSHAPKO A G, BUKAEMSKⅡ A A, STAVER A M.Formation of ultradispersed compounds upon shock wave loading of porous aluminum.Study of particles obtained [J].Combust Explos Shock, 1990, 26(4):457-461. doi: 10.1007/BF00745089
    [7] LUO N, LI X J, WANG X H, et al.Synthesis of carbon-encapsulated metal nanoparticles by a detonation method [J].Combust Explos Shock Waves, 2010, 46(5):609-613. doi: 10.1007/s10573-010-0081-x
    [8] LUO N, LI X J, LIU K X, et al.Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol-gel explosive precursors [J].J Nanopart Res, 2013, 15(5):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89931106fa8bd06837dff893586f14b6
    [9] LUO N, LIU K X, LI X J, et al.Systematic study of detonation synthesis of Ni-based nanoparticles [J].Chem Eng J, 2012, 210:114-119. doi: 10.1016/j.cej.2012.08.073
    [10] LI X J, OUYANG X, YAN H H, et al.Detonation synthesis of TiO2 nanoparticles in gas phase [J].Adv Mater Res, 2008, 32:13-16. doi: 10.4028/www.scientific.net/AMR.32
    [11] YAN H H, XI S X, HUANG X C.Study on nano SiO2 synthesized by gaseous detonation under different initial temperature [J].Mater Sci Forum, 2011, 694:180-183. doi: 10.4028/www.scientific.net/MSF.694
    [12] YAN H H, WU L S, LI X J, et al.Detonation synthesis of SnO2 nanoparticles in gaseous phase method [J].Rare Metal Mater Eng, 2013, 42(7):1325-1327. doi: 10.1016/S1875-5372(13)60078-8
    [13] 邹安全, 邓沛然, 邓芬燕, 等.可锻铸铁多段热处理工艺研究[J].中国工程科学, 2005, 7(12):74-82. doi: 10.3969/j.issn.1009-1742.2005.12.013

    ZOU A Q, DENG P R, DENG F Y, et al.Study on technology of multistage heat treatment for malleable iron [J].Engineering Science, 2005, 7(12):74-82. doi: 10.3969/j.issn.1009-1742.2005.12.013
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  7648
  • HTML全文浏览量:  2718
  • PDF下载量:  58
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-03-09

目录

    /

    返回文章
    返回