二维骨料随机分布混凝土的动态力学性能数值模拟

刘海峰 韩莉

刘海峰, 韩莉. 二维骨料随机分布混凝土的动态力学性能数值模拟[J]. 高压物理学报, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003
引用本文: 刘海峰, 韩莉. 二维骨料随机分布混凝土的动态力学性能数值模拟[J]. 高压物理学报, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003
LIU Hai-Feng, HAN Li. Numerical Simulation of Dynamic Mechanical Behavior of Concrete with Two-dimensional Random Distribution of Coarse Aggregate[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003
Citation: LIU Hai-Feng, HAN Li. Numerical Simulation of Dynamic Mechanical Behavior of Concrete with Two-dimensional Random Distribution of Coarse Aggregate[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 191-199. doi: 10.11858/gywlxb.2016.03.003

二维骨料随机分布混凝土的动态力学性能数值模拟

doi: 10.11858/gywlxb.2016.03.003
基金项目: 

国家自然基金 11162015

国家自然基金 51368048

教育部“长江学者和创新团队发展计划”创新团队项目 IRT1067

详细信息
    作者简介:

    刘海峰(1975—), 男,博士,教授, 主要从事材料和结构动态力学性能研究.Email:liuhaifeng1557@163.com

  • 中图分类号: O347.3

Numerical Simulation of Dynamic Mechanical Behavior of Concrete with Two-dimensional Random Distribution of Coarse Aggregate

  • 摘要: 将混凝土看成粗骨料和水泥砂浆组成的二相非均质复合材料。根据富勒级配曲线和瓦拉文平面转化公式,编写了二维圆形骨料随机分布程序,对混凝土在冲击荷载作用下的动力响应进行了数值模拟。分析冲击速度、试件尺寸、粗骨料大小及分布和粗骨料体积分数对混凝土动态力学性能的影响,讨论了混凝土的冲击破坏模式。数值模拟表明:混凝土的峰值应力随着冲击速度的增大而增大,具有明显的率效应;随着模型尺寸的增大而减小,表现出明显的尺寸效应;随着粗骨料体积分数增大,冲击荷载作用下混凝土的峰值应力呈现先增大后减小的趋势,粗骨料体积分数为40%时混凝土峰值应力最大;保持粗骨料最大粒径不变,随着粗骨料最小粒径的增大,混凝土的峰值应力逐渐减小;保持粗骨料最小粒径不变,随着粗骨料最大粒径的增大,混凝土的峰值应力呈现先增大后减小的趋势。数值模拟结果为混凝土的工程应用提供了理论依据和技术支撑。

     

  • 图  不同尺寸有限元模型

    Figure  1.  Finite element models of different sizes

    图  HJC状态方程曲线

    Figure  2.  HJC curve of equation of state

    图  混凝土破坏形式

    Figure  3.  Failure mode of concrete

    图  实验与数值模拟峰值应力比较

    Figure  4.  Comparison of peak stress:experimental versus numerical simulation results

    图  混凝土的冲击破坏过程

    Figure  5.  Impact failure process of concrete

    图  混凝土峰值应力与冲击速度的关系

    Figure  6.  Peak stress of concrete versus impact speed

    图  混凝土峰值应力与试件尺寸关系

    Figure  7.  Peak stress of concrete versus specimen dimension

    图  混凝土粗骨料最小粒径对峰值应力影响

    Figure  8.  Influence of minimum diameter of coarse aggregate on the peak stress of concrete

    图  混凝土粗骨料最大粒径对峰值应力影响

    Figure  9.  Influence of maximum diameter of coarse aggregate on the peak stress of concrete

    图  10  混凝土粗骨料体积分数对峰值应力的影响

    Figure  10.  Influence of volume fraction of coarse aggregate on the peak stress of concrete

    表  1  砂浆模型参数

    Table  1.   Model parameters of cement mortar

    ρ0/(g/cm3) G/(GPa) A B fc′/(MPa) C N Smax T/(MPa) D1 D2 εf, min pc/(MPa) μc p1/(MPa) μ1 K1/(MPa) K2/(MPa) K3/(MPa) fs
    2.10 10.66 0.79 1.80 32 0.007 0.61 7 2.656 0.04 1.0 0.01 10.67 0.000 7 800 0.1 85 -171 208 0.002
    下载: 导出CSV

    表  2  骨料模型参数

    Table  2.   Model parameters of coarse aggregate

    ρ0/(g/cm3) G/(GPa) A B fc′/(MPa) C N Smax T/(MPa) D1 D2 εf, min pc/(MPa) μc p1/(MPa) μ1 K1/(MPa) K2/(MPa) K3/(MPa) fs
    2.60 23.00 0.79 1.80 70 0.007 0.61 7 5.81 0.04 1.0 0.01 23.33 0.000 8 1 200 0.012 85 -171 208 0.002
    下载: 导出CSV
  • [1] PARK S W, XIA Q, ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:Ⅱ.Numerical simulation[J].Int J Impact Eng, 2001, 25(9):887-910. doi: 10.1016/S0734-743X(01)00021-5
    [2] PEDERSEN R R, SIMONE A, SLUYS L J.Mesoscopic modeling and simulation of the dynamic tensile behavior of concrete [J].Cement Concrete Res, 2013, 50(1):74-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8350a5ab20d44dbe0e931e90a212afb
    [3] 刘光廷, 王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报, 1996, 36(1):84-89. doi: 10.3321/j.issn:1000-0054.1996.01.007

    LIU G T, WANG Z M.Numerical simulation study of fracture of concrete materials using random aggregate model[J].Journal of Tsinghua University (Sci & Tech), 1996, 36(1):84-89. doi: 10.3321/j.issn:1000-0054.1996.01.007
    [4] 王宗敏, 邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报, 2005, 22(6):728-732. doi: 10.3969/j.issn.1007-4708.2005.06.017

    WANG Z M, QIU Z Z.Random aggregate structure of mesoscopic concrete and finite element mesh[J].Chinese Journal of Computational Mechanics, 2005, 22(6):728-732. doi: 10.3969/j.issn.1007-4708.2005.06.017
    [5] 马怀发, 陈厚群, 吴建平, 等.大坝凝土三维细观力学数值模型研究[J].计算力学学报, 2008, 25(2):241-247. http://d.old.wanfangdata.com.cn/Periodical/jslxxb200802018

    MA H F, CHEN H Q, WU J P, et al.Study on numerical simulation of 3D meso-mechanics model of dam concrete[J].Chinese Journal of Computational Mechanics, 2008, 25(2):241-247. http://d.old.wanfangdata.com.cn/Periodical/jslxxb200802018
    [6] 杜修力, 金浏.基于随机多尺度力学模型的混凝土力学特性研究[J].工程力学, 2011, 28(增刊Ⅰ):151-155. http://d.old.wanfangdata.com.cn/Conference/7323456

    DU X L, JIN L.Mechanical property research on concrete based on random multi-scale mechanical model[J].Engineering Mechanics, 2011, 28(Suppl Ⅰ):151-155. http://d.old.wanfangdata.com.cn/Conference/7323456
    [7] 孔令超.用均匀化方法研究研究细观粒状材料的力学性能[D].北京: 北京理工大学, 2008.

    KONG L C.Research on the mechanical behavior of micro-granular material by means of homogenization theory[D].Beijing: Beijing Institute of Technology, 2008.
    [8] 宋来忠, 沈涛, 余波.混凝土二维参数化骨料模型的创建方法[J].工程力学, 2013, 30(10):5-13. doi: 10.6052/j.issn.1000-4750.2012.05.0390

    SONG L Z, SHEN T, YU B.The approach to establishing a two-dimensional parameterized aggregate model for concrete simulation[J].Engineering Mechanics, 2013, 30(10):5-13. doi: 10.6052/j.issn.1000-4750.2012.05.0390
    [9] 张柱, 赵慧, 于晖.混凝土材料动态力学性能实验与数值模拟研究[J].高压物理学报, 2011, 25(6):533-538. http://www.gywlxb.cn/CN/Y2011/V25/I6/533

    ZHANG Z, ZHAO H, YU H.Experiments and numerical simulations of concrete dynamic mechanical properties[J].Chinese Journal of High Pressure Physics, 2011, 25(6):533-538. http://www.gywlxb.cn/CN/Y2011/V25/I6/533
    [10] FULLER W B, THOMPSON S E.The laws of proportioning concrete [J].J Transport Div, 1907, 59(1):67-14.
    [11] WALARAVEN J C, REINHARDT H W.Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading [J].Heron, 1981, 26(1A):26-35. http://adsabs.harvard.edu/abs/1981stin...8225417w
    [12] 陈志源, 李启令.土木工程材料[M].第2版.武汉:武汉理工大学出版社, 2009.

    CHEN Z Y, LI Q L.Civil engineering materials[M].2nd ed.Wuhan:Wuhan University of Technology Press, 2009.
    [13] HOLMQUIST T J, JOHNSON G R, COOK W H.A computational constitutive model for concrete subjective to large strains, high strain rates and high pressures [C]//JACKSON N, DICKERS S.The 14th international symposium on Ballistics.Québec, Canada, 1993.
    [14] 曾毅.基于细观力学的碎石混凝土侵彻数值模拟[D].绵阳: 西南科技大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2230289

    ZENG Y.Numerical simulation of penetration of macadam concrete based on mesomechanics[D].Mianyang: Southwest University of Science and Technology, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2230289
    [15] LIU H F, NING J G.Constitutive model for concrete subjected to impact loading[J]. Journal of Southeast University (English Edition), 2012, 28(1):79-84. http://en.cnki.com.cn/Article_en/CJFDTotal-DNDY201201017.htm
    [16] LIU H F, LIU H Y, SONG W D.Fracture characteristics of concrete subjected to impact loading[J].Science China:Physics, Mechanics & Astronomy, 2010, 53(2):253-26. doi: 10.1007/s11433-009-0268-x
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6180
  • HTML全文浏览量:  2508
  • PDF下载量:  122
出版历程
  • 收稿日期:  2014-07-19
  • 修回日期:  2014-09-23

目录

    /

    返回文章
    返回