正高电压对CH4/O2/N2稀燃火焰传播和燃烧特性的影响

孟祥文 吴筱敏 苗展丽 何燕 焦煜

孟祥文, 吴筱敏, 苗展丽, 何燕, 焦煜. 正高电压对CH4/O2/N2稀燃火焰传播和燃烧特性的影响[J]. 高压物理学报, 2016, 30(2): 149-156. doi: 10.11858/gywlxb.2016.02.010
引用本文: 孟祥文, 吴筱敏, 苗展丽, 何燕, 焦煜. 正高电压对CH4/O2/N2稀燃火焰传播和燃烧特性的影响[J]. 高压物理学报, 2016, 30(2): 149-156. doi: 10.11858/gywlxb.2016.02.010
MENG Xiang-Wen, WU Xiao-Min, MIAO Zhan-Li, HE Yan, JIAO Yu. Effects of Positive High-Voltage on Flame Propagation and Combustion Characteristics of Lean Premixed CH4/O2/N2 Flames[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 149-156. doi: 10.11858/gywlxb.2016.02.010
Citation: MENG Xiang-Wen, WU Xiao-Min, MIAO Zhan-Li, HE Yan, JIAO Yu. Effects of Positive High-Voltage on Flame Propagation and Combustion Characteristics of Lean Premixed CH4/O2/N2 Flames[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 149-156. doi: 10.11858/gywlxb.2016.02.010

正高电压对CH4/O2/N2稀燃火焰传播和燃烧特性的影响

doi: 10.11858/gywlxb.2016.02.010
基金项目: 

山东省自然科学基金 ZR2014EEP010

青岛科技大学科研启动基金 

国家自然科学基金 51176150

国家自然科学基金 51476126

详细信息
    作者简介:

    孟祥文(1985—), 男,博士,讲师,主要从事电场作用下火焰传播和燃烧特性的研究. E-mail:meng_qust2013@163.com

    通讯作者:

    吴筱敏(1957—), 女,博士,教授,主要从事电场与火焰相互关系、新型检测技术的研究. E-mail:xmwu@mail.xjtu.edu.cn

  • 中图分类号: O552.32

Effects of Positive High-Voltage on Flame Propagation and Combustion Characteristics of Lean Premixed CH4/O2/N2 Flames

  • 摘要: 在定容燃烧弹上,通过实验研究了正高电压对过量空气系数λ不同的CH4/O2/N2预混稀燃火焰的传播和燃烧特性的影响。结果表明:正高压电场可以显著促进稀燃火焰在电场方向上的传播,且促进效应随着电压幅度的增大而增强。当电压幅度为12 kV时,对于λ为1.6和1.8的CH4/O2/N2预混气体,其平均火焰传播速率为1.38和1.07 m/s,与未加电场时相比,分别增大了133.41%和369.97%;压力峰值分别比未加电场时增大了13.07%和100.81%,压力峰值到达时刻分别提前了35.94%和18.09%。由此可知,正高电压可明显改善CH4/O2/N2稀燃火焰的传播和燃烧特性。

     

  • 图  实验台架结构图

    Figure  1.  Schematic diagram of experimental setup

    图  定容燃烧弹和网状电极结构示意图

    Figure  2.  Structures of constant-volume combustion chamber and mesh electrode

    图  U=10 kV对应的电场分布

    Figure  3.  Distribution of the electric field strength at U=10 kV

    图  未加电场与施加电场时的火焰前锋面

    Figure  4.  Schiliren photos of flame front underthe influence of high-voltage electric fields

    图  火焰半径定义示意图

    Figure  5.  Schematic diagram of theredefined flame radius

    图  不同过量空气系数和电压时典型火焰扩展纹影图片

    Figure  6.  Typical flame propagation images with different excess air ratios and applied voltages

    图  不同加载电压下,规范化火焰变形率随时间的变化

    Figure  7.  Normalized flame deformation ratio vs. combustion time at various applied voltages

    图  不同加载电压下,火焰传播速率随火焰半径的变化

    Figure  8.  Flame propagation speed vs. flame radius at various applied voltages

    图  不同过量空气系数下,平均火焰传播速率随加载电压的变化

    Figure  9.  Mean flame propagation speed vs. applied voltage at different excess air ratios

    图  10  正高压电场对稀燃火焰燃烧压力的影响

    Figure  10.  Influence of positive high-voltage electric fields on combustion pressure of lean flame

    表  1  当过量空气系数不同时,燃烧特性参数随输入电压的变化情况

    Table  1.   Combustion Characteristic parameters vs. applied voltage

    U/(kV) λ=1.6 λ=1.8
    pm/(kPa) tp/(ms) Δpm/(%) Δtp/(%) pm/(kPa) tp/(ms) Δpm/(%) Δtp/(%)
    0 393.27 226.90 0 0 173.54 384.10 0 0
    2.5 402.04 199.45 2.23 -12.10 199.75 416.00 15.10 8.31
    5.0 414.90 186.40 5.50 -17.85 255.88 422.80 47.45 10.08
    7.5 421.52 171.30 7.18 -24.50 273.96 412.70 57.87 7.45
    10.0 437.69 158.65 11.13 -30.08 330.15 323.20 90.24 -15.86
    12.0 444.69 145.35 13.07 -35.94 348.48 314.60 100.81 -18.09
    下载: 导出CSV
  • [1] WANG X, ZHANG H G, YAO B F, et al.Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends[J].Energy, 2012, 38(1):58-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=26105b111e2032b68a73209a814d5736
    [2] HUANG Y, YANG V.Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor[J].Proc Combust Inst, 2005, 30(2):1775-1782. doi: 10.1016/j.proci.2004.08.237
    [3] DAI X X, JI C W, WANG S F, et al.Effect of syngas addition on performance of a spark-ignited gasoline engine at lean conditions[J].Int J Hydrogen Energ, 2012, 37(19):14624-14631. doi: 10.1016/j.ijhydene.2012.07.039
    [4] RIVIN B, DULGER M, SHER E.Extending lean misfire limit of methane-air mixtures by means of an enhanced Spark Discharge: 1999-01-0573[R].Society of Automotive Engineers, 1999.
    [5] LAWTON J, WEINBERG F J.Electrical aspects of combustion[M].Oxford:Clarendon Press, 1969.
    [6] GOODINGS J M, BOHME DK, NG C W.Detailed ion chemistry in methane-oxygen flames.I.Positive ions[J].Combust Flame, 1979, 36:27-43. doi: 10.1016/0010-2180(79)90044-0
    [7] MARCUM S D, GANGULY B N.Electric-field-induced flame speed modification[J].Combust Flame, 2005, 143(1/2):27-36. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028178109/
    [8] KIM M K, RYU S K, WON S H, et al.Electric fields effect on liftoff and blow-off of non-premixed laminar jet flames in a co-flow[J].Combust Flame, 2010, 157(1):17-24. http://www.sciencedirect.com/science/article/pii/S0010218009002806
    [9] VAN DEN BOOM J, KONNOV A A, VERHASSELT A, et al.The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J].Proc Combust Inst, 2009, 32(1):1237-1244. doi: 10.1016/j.proci.2008.06.083
    [10] STARIKOWSKⅡ A, SKOBLIN M, HAMMER T.Influence of weak electric fields on the flame structure[C]//17th International Conference on Gas Discharges and Their Applications.New York: Institute of Electrical and Electronics Engineers, 2008: 629-632. https://www.researchgate.net/publication/224098962_Influence_of_weak_electric_fields_on_flame_structure
    [11] MORIYA S, YOSHIDA K, SHOJI H, et al.The effect of uniform and non-uniform electric fields on flame propagation[J].J Therm Sci Tech, 2008, 3(2):254-265. doi: 10.1299/jtst.3.254
    [12] CHA M S, LEE Y.Premixed combustion under electric field in a constant volume chamber[J].IEEE T Plasma Sci, 2012, 40(12):3131-3138. doi: 10.1109/TPS.2012.2206120
    [13] MENG X W, WU X M, KANG C, et al.Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of premixed CH4/O2/N2 flames[J].Energ Fuels, 2012, 26(11):6612-6620. doi: 10.1021/ef300972g
    [14] MENG X W, WU X M, LIU J, et al.Effects of direct-current (DC) electric fields on flame propagation and combustion characteristics of lean premixed CH4/O2/N2 flames: 2013-01-0309[R].Society of Automotive Engineers, 2013.
    [15] GOODINGS J M, BOHME D K, NG C W.Detailed ion chemistry in methane-oxygen flames.Ⅱ.Negative ions[J].Combust Flame, 1979, 36:45-62. doi: 10.1016/0010-2180(79)90045-2
    [16] KIM M K, CHUNG S H, KIM H H.Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency:Bi-ionic wind effect[J].Combust Flame, 2012, 159(3):1151-1159. doi: 10.1016/j.combustflame.2011.10.018
    [17] SAITZKOFF A, REINMANN R, MAUSS F, et al.In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor: 970857[R].Society of Automotive Engineers, 1997: 1235-1245.
    [18] GANGULY B N.Hydrocarbon combustion enhancement by applied electric field and plasma kinetics[J].Plasma Phys Contr F, 2007, 49(12):239-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08e30672fe029b14aea065c45f81769b
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  6742
  • HTML全文浏览量:  2665
  • PDF下载量:  124
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2015-02-09

目录

    /

    返回文章
    返回