过渡金属钼高压物性的第一原理研究

赵凯 蔡灵仓 张修路 罗雰

赵凯, 蔡灵仓, 张修路, 罗雰. 过渡金属钼高压物性的第一原理研究[J]. 高压物理学报, 2016, 30(2): 94-100. doi: 10.11858/gywlxb.2016.02.002
引用本文: 赵凯, 蔡灵仓, 张修路, 罗雰. 过渡金属钼高压物性的第一原理研究[J]. 高压物理学报, 2016, 30(2): 94-100. doi: 10.11858/gywlxb.2016.02.002
ZHAO Kai, CAI Ling-Cang, ZHANG Xiu-Lu, LUO Fen. First-Principles Investigations on Materials Properties of Mo under High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 94-100. doi: 10.11858/gywlxb.2016.02.002
Citation: ZHAO Kai, CAI Ling-Cang, ZHANG Xiu-Lu, LUO Fen. First-Principles Investigations on Materials Properties of Mo under High Pressure[J]. Chinese Journal of High Pressure Physics, 2016, 30(2): 94-100. doi: 10.11858/gywlxb.2016.02.002

过渡金属钼高压物性的第一原理研究

doi: 10.11858/gywlxb.2016.02.002
基金项目: 

国家自然科学基金委员会-中国工程物理研究院联合基金 U1230201

详细信息
    作者简介:

    赵凯(1988—), 男,硕士研究生,主要从事过渡金属高压物性研究.E-mail:kervinzhao@163.com

    通讯作者:

    蔡灵仓(1964—), 男,博士,研究员,主要从事高压凝聚态物理研究.E-mail:Cai_lingcang@aliyun.com

  • 中图分类号: O521.2; O522.2

First-Principles Investigations on Materials Properties of Mo under High Pressure

  • 摘要: 在平面波赝势密度泛函理论的框架下,利用广义梯度近似(GGA)计算了体心立方(bcc)和双层密排六方(dhcp)结构的Mo在不同体积下的总能和焓值,算得的等温压缩线与前人的计算结果符合较好。对焓值作差,预测了620 GPa压强附近bcc→dhcp的结构相变。根据声子谱的计算结果可知,在高压下,bcc结构可能会向dhcp或9R结构转变。力学稳定性的计算结果进一步显示,在620 GPa以上,dhcp-Mo是能够稳定存在的相。结合准谐德拜模型研究了Mo在高压下的热力学性质,计算结果表明,在620 GPa附近,bcc和dhcp结构Mo的热力学性质并无显著差异。

     

  • 图  bcc和dhcp钼的零温焓值之差ΔH随外界静水压的变化关系

    Figure  1.  Enthalpy difference between bcc and dhcp Mo vs. pressure

    图  不同温度下计算得到的bcc和dhcp钼的等温压缩线

    Figure  2.  Calculated isotherms of bcc and dhcp Mo at given temperatures

    图  零压下bcc-Mo的声子色散关系(空心点是Farber等人[19]的实验值)

    Figure  3.  Phonon dispersion of bcc-Mo at 0 GPa (Open symbols are the experimental data by Farber et al.[19])

    图  17.2 GPa下bcc-Mo的声子色散关系(空心点是Farber等人[19]的实验值)

    Figure  4.  Phonon dispersion of bcc-Mo at 17.2 GPa (Open symbols are the experimental data by Farber et al.[19])

    图  不同静水压下bcc-Mo的声子色散关系

    Figure  5.  Phonon dispersions of bcc-Mo under different pressures

    图  bcc-Mo在925和950 GPa下的声子色散关系

    Figure  6.  Phonon dispersions of bcc-Mo at 925 and 950 GPa

    图  不同静水压下dhcp-Mo的声子色散关系

    Figure  7.  Phonon dispersions of dhcp-Mo under different pressures

    图  bcc-Mo的力学稳定性随压力的变化关系

    Figure  8.  Mechanical stability of bcc-Mo as a function of pressure

    图  不同温度下Mo的德拜温度随压力的变化关系

    Figure  9.  Debye temperature of Mo vs. pressure at different temperatures

    图  10  不同温度下Mo的熵随压力的变化关系

    Figure  10.  Entropy of Mo as a function of pressure at different temperatures

    图  11  不同温度下Mo的热膨胀系数随压力的变化关系

    Figure  11.  Thermal expansions of Mo vs. pressure at different temperatures

    图  12  不同温度下Mo的热容量随压力的变化关系

    Figure  12.  Isochoric heat capacity of Mo as a function of pressure at different temperatures

    表  1  1 000 GPa范围内dhcp-Mo的力学稳定性

    Table  1.   Mechanical stability of dhcp-Mo up to 1 000 GPa

    p/
    (GPa)
    ${{\tilde C}_{44}} $/
    (GPa)
    $\left( {{{\tilde C}_{11}} - \left| {{{\tilde C}_{12}}} \right|} \right)$
    (GPa)
    $[{{\tilde C}_{33}}({{\tilde C}_{11}} + {{\tilde C}_{12}}) - 2\tilde C_{13}^2]$/
    (1018Pa2)
    0-45.797 9-145.371 95158 259.745 7
    10049.418 2-13 143.735 751 740 024.352 0
    200123.159 0-455.594 851 482 513.300 0
    300233.533 7-247.279 802 577 710.463 0
    400338.946 7185.314 704 205 526.928 0
    500422.381 2467.430 956 525 467.545 0
    600498.987 5567.412 808 155 593.123 0
    700590.033 1686.572 2010 213 355.090 0
    800669.932 4884.307 6513 658 179.890 0
    900729.620 31 148.540 9017 596 671.990 0
    1 000777.745 61 210.616 6519 716 829.140 0
    下载: 导出CSV
  • [1] HIXSON R S, BONESS D A, SHANER J W, et al.Acoustic velocities and phase transitions in molybdenum under strong shock compression [J].Phys Rev Lett, 1989, 62(6):637. doi: 10.1103/PhysRevLett.62.637
    [2] VOHRA Y K, RUOFF A L.Static compression of metals Mo, Pb, and Pt to 272 GPa:Comparison with shock data [J].Phys Rev B, 1990, 42(13):8651. doi: 10.1103/PhysRevB.42.8651
    [3] SANTAMARÍA-PÉREZ D, ROSS M, ERRANDONEA D, et al.X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram [J].J Chem Phys, 2009, 130(12):124509. doi: 10.1063/1.3082030
    [4] MORIARTY J A.Ultrahigh-pressure structural phase transitions in Cr, Mo, and W [J].Phys Rev B, 1992, 45(5):2004. doi: 10.1103/PhysRevB.45.2004
    [5] BOETTER J C.Relativistic effects on the structural phase stability of molybdenum [J].J Phys:Condens Matter, 1999, 11(16):3237. doi: 10.1088/0953-8984/11/16/005
    [6] BELONOSHKO A B, BURAKOVSKY L, CHEN S P, et al.Molybdenum at high pressure and temperature:Melting from another solid phase [J].Phys Rev Lett, 2008, 100(13):135701. doi: 10.1103/PhysRevLett.100.135701
    [7] CAZORLA C, ALFÈD, GILLAN M J.Constraints on the phase diagram of molybdenum from first-principles free-energy calculations [J].Phys Rev B, 2012, 85(6):064113. doi: 10.1103/PhysRevB.85.064113
    [8] WANG B, ZHANG G B, WANG Y X.Predicted crystal structures of molybdenum under high pressure [J].J Alloys Compd, 2013, 556:116-120. doi: 10.1016/j.jallcom.2012.12.006
    [9] PAYNE M C, TETER M P, ALLAN D C, et al.Iterative minimization techniques for ab initio total-energy calculations:Molecular dynamics and conjugate gradients [J].Rev Mod Phys, 1992, 64(4):1045. doi: 10.1103/RevModPhys.64.1045
    [10] WU Z, COHEN R E.More accurate generalized gradient approximation for solids [J].Phys Rev B, 2006, 73(23):235116. doi: 10.1103/PhysRevB.73.235116
    [11] VANDERBILT D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Phys Rev B, 1990, 41(11):7892. doi: 10.1103/PhysRevB.41.7892
    [12] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations [J].Phys Rev B, 1976, 13(12):5188. doi: 10.1103/PhysRevB.13.5188
    [13] PFROMMER B G, CÔTÉ M, LOUIE S G, et al.Relaxation of crystals with the quasi-Newton method [J].J Comput Phys, 1997, 131:233-240. doi: 10.1006/jcph.1996.5612
    [14] REFSON K, TULIP P R, CLARK S J.Variational density-functional perturbation theor for dielectrics and lattice dynamics [J].Phys Rev B, 2006, 73(15):155114. doi: 10.1103/PhysRevB.73.155114
    [15] LIN J S, QTEISH A, PAYNE M C, et al.Optimized and transferable nonlocal separable ab initio pseudopotentials [J].Phys Rev B, 1993, 47(8):4174. doi: 10.1103/PhysRevB.47.4174
    [16] OTERO-DE-LA-ROZA A, PÉREZ D A, LUAÑA V.GIBBS2:A new version of the quasiharmonic model code.Ⅱ.Models for solid-state thermodynamics, features and implementation [J].Comput Phys Commun, 2011, 182(10):2232-2248. doi: 10.1016/j.cpc.2011.05.009
    [17] HIXSON R S, FRITZ J N.Shock compression of tungsten and molybdenum [J].J Appl Phys, 1992, 71(4):1721. doi: 10.1063/1.351203
    [18] WANG Y, CHEN D, ZHANG X.Calculated equation of state of Al, Cu, Ta, Mo, and W to 1 000 GPa [J].Phys Rev Lett, 2000, 84(15):3220. doi: 10.1103/PhysRevLett.84.3220
    [19] FARBER D L, KRISCH M, ANTONANGELI D, et al.Lattice dynamics of molybdenum at high pressure [J].Phys Rev Lett, 2006, 96:115502. doi: 10.1103/PhysRevLett.96.115502
    [20] GRIMVALL G, KÖPE B M, OZOLINŠ V, et al.Lattice instabilities in metallic elements [J].Rev Mod Phys, 2012, 84:945. doi: 10.1103/RevModPhys.84.945
    [21] KRASILNIKOV O M, BELOV M P, LUGOVSKOY A V, et al.Elastic properties, lattice dynamics and structural transitions in molybdenum at high pressures [J].Comput Mater Sci, 2014, 81:313. doi: 10.1016/j.commatsci.2013.08.038
    [22] SIN'KO G V, SMIRNOV N A.Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc and hcp Al crystals under pressure [J].J Phys:Condens Matter, 2002, 14:6989. doi: 10.1088/0953-8984/14/29/301
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  7052
  • HTML全文浏览量:  2817
  • PDF下载量:  153
出版历程
  • 收稿日期:  2014-01-20
  • 修回日期:  2014-04-04

目录

    /

    返回文章
    返回