极端条件下Ge3N4的弹性性能、电子性质和相稳定性

陈东 仓玉萍

陈东, 仓玉萍. 极端条件下Ge3N4的弹性性能、电子性质和相稳定性[J]. 高压物理学报, 2015, 29(5): 383-391. doi: 10.11858/gywlxb.2015.05.009
引用本文: 陈东, 仓玉萍. 极端条件下Ge3N4的弹性性能、电子性质和相稳定性[J]. 高压物理学报, 2015, 29(5): 383-391. doi: 10.11858/gywlxb.2015.05.009
CHEN Dong, CANG Yu-Ping. Study of the Electronic Structure, High-Pressure Elastic Property and Phase Stability of Germanium Nitride[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 383-391. doi: 10.11858/gywlxb.2015.05.009
Citation: CHEN Dong, CANG Yu-Ping. Study of the Electronic Structure, High-Pressure Elastic Property and Phase Stability of Germanium Nitride[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 383-391. doi: 10.11858/gywlxb.2015.05.009

极端条件下Ge3N4的弹性性能、电子性质和相稳定性

doi: 10.11858/gywlxb.2015.05.009
基金项目: 国家自然科学基金(U1204501, 61475132, 11304141, 11475143)
详细信息
    作者简介:

    陈东(1982—), 男, 硕士, 讲师, 主要从事凝聚态物性研究.E-mail:13995529331@163.com

  • 中图分类号: O521.2; O641

Study of the Electronic Structure, High-Pressure Elastic Property and Phase Stability of Germanium Nitride

  • 摘要: 采用密度泛函理论框架下的平面波方法结合准谐近似,研究了Ge3N4β相、w相和γ相在高温高压条件下的力学稳定性、相变点、电子结构和弹性性质。结果表明:γ相的抗剪切能力最强、刚度最大、属于超硬材料,β相具有最小的体弹模量、杨氏模量和G/B值、因此韧性和延性最好;w相和β相都属于延性相;而γ相则呈现出脆性,在30 GPa后转变为延性材料。3种相都属于半导体,成键主要来自于N-2p轨道和Ge-4s、Ge-4p轨道的杂化;它们的结构能保持稳定是源于强烈的共价键;β相、w相和γ相分别属于Γ-A型、Γ-N型间接带隙和直接带隙半导体。研究发现,βw相变对压强非常敏感,可以认为该相变是因压强的改变而引起的;wγ相变伴随着晶胞体积的塌缩;同时,还成功地得到了βwγ相变的相界。

     

  • 图  (a) 1 100 K时β相和γ相的吉布斯自由能与w相的自由能之差(ΔG); (b) βwγ相变的相界;(c) 1 200 K时β相和γ相的吉布斯自由能差(Gβ-Gγ)

    Figure  1.  (a) Gibbs free energy differences of β and γ phases with respect to the w phase at 1 100K; (b) T-p phase diagram of β-, w- and γ-Ge3N4; (c) Free energy differences Gβ-Gγ at 1 200 K

    图  3种Ge3N4同质异形体的能带

    Figure  2.  Band structures of Ge3N4

    (a) β phase (b) w phase (c) γ phase

    图  Ge3N4的总态密度

    Figure  3.  Total density of states for Ge3N4

    图  Ge3N4晶体中N原子的分波态密度

    Figure  4.  Partial-wave density of states of the N atoms in Ge3N4

    图  Ge3N4晶体中Ge原子的分波态密度

    Figure  5.  Partial-wave density of states of the Ge atoms in Ge3N4

    表  1  β-Ge3N4的点阵常数ac, 弹性常数Cij, 多晶体弹模量B, 剪切模量G, 杨氏模量E, B/G比值, 泊松比μ, 弹性各向异性因子A1A2A3在不同压强下的值

    Table  1.   Lattice constants a, c, elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E, B/G, Poisson ratio μ, anisotropy factors A1, A2 and A3 for β-Ge3N4 under pressures

    p/
    (GPa)
    a/
    (nm)
    c/
    (nm)
    C11/
    (GPa)
    C12/
    (GPa)
    C13/
    (GPa)
    C33/
    (GPa)
    C44/
    (GPa)
    B/
    (GPa)
    G/
    (GPa)
    E/
    (GPa)
    $\frac{B}{G}$ μ A1 A2 A3
    0 0.811 9 0.310 4 286.2 144.3 120.3 277.8 99.2 180.7 83.9 217.9 2.153 0.298 1.226 1.226 2.407
    2 0.808 8 0.309 4 297.5 156.9 130.6 288.8 101.1 190.8 84.4 220.6 2.260 0.307 1.243 1.243 2.460
    4 0.805 9 0.308 4 305.1 168.1 137.9 297.5 104.4 199.2 84.8 222.7 2.349 0.313 1.277 1.277 2.565
    6 0.803 1 0.307 5 314.3 175.5 145.6 300.7 103.9 206.6 84.9 224.0 2.433 0.319 1.283 1.283 2.568
    8 0.800 3 0.306 6 313.1 188.5 152.7 303.4 103.8 212.6 80.9 215.3 2.627 0.331 1.334 1.334 2.806
    10 0.797 7 0.305 8 329.1 196.1 161.4 313.7 107.3 222.8 84.5 225.0 2.636 0.332 1.341 1.341 2.706
    p/
    (GPa)
    acalc/(nm) aExp/(nm) ccalc/(nm) cExp/(nm) C11,calc/
    (GPa)
    C12, calc/
    (GPa)
    C13, calc/
    (GPa)
    C33, calc/
    (GPa)
    C44, calc/
    (GPa)
    BExp/(nm)
    Ref.[25] Ref.[13] Ref.[1] Ref.[26] Ref.[25] Ref.[13] Ref.[1] Ref.[26] Ref.[5] Ref.[27]
    0 0.782 6 0.789 9 0.803 8 0.803 2 0.299 3 0.301 4 0.307 4 0.307 7 364.3[21] 184.9[25] 111.7[25] 486.3[25] 80.4[25] 218.0 185.0
    下载: 导出CSV

    表  2  不同压强下w-Ge3N4的点阵常数a, 弹性常数Cij, 多晶体弹模量B, 剪切模量G, 杨氏模量E, B/G比, 泊松比μ, 各向异性因子A*和维氏硬度HV

    Table  2.   Pressure dependences of the lattice constant a, elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E, B/G, Poisson ratio μ, anisotropy factors A* and Vickers hardness HV for w-Ge3N4

    p/(GPa) a/(nm) C11/(GPa) C12/(GPa) C44/(GPa) B/(GPa) G/(GPa) E/(GPa) B/G μ A* HV
    10 0.675 3 281.6 179.6 160.4 213.6 101.5 262.8 2.104 0.294 0.149 9.49
    15 0.670 1 282.4 189.9 163.9 220.7 99.1 258.5 2.227 0.304 0.179 8.53
    20 0.664 9 279.1 198.1 169.7 225.1 96.3 252.8 2.337 0.312 0.225 7.72
    25 0.660 1 270.1 199.4 174.2 222.9 93.2 245.3 2.391 0.316 0.273 7.23
    30 0.654 9 260.1 198.8 177.7 219.2 89.9 237.2 2.438 0.319 0.322 6.79
    35 0.649 9 250.4 200.4 181.3 217.1 85.2 226.0 2.548 0.326 0.392 6.01
    下载: 导出CSV

    表  3  不同压强下γ-Ge3N4的点阵常数a, 弹性常数Cij, 多晶体弹模量B, 剪切模量G, 杨氏模量E, B/G比, 泊松比μ, 弹性各向异性因子A*和维氏硬度HV

    Table  3.   Pressure dependences of the lattice constant a, elastic constants Cij, bulk modulus B, shear modulus G, Young's modulus E, B/G, Poisson ratio μ, anisotropy factors A* and Vickers hardness HV for γ-Ge3N4

    p/(GPa) a/(nm) C11/(GPa) C12/(GPa) C44/(GPa) B/(GPa) G/(GPa) E/(GPa) B/G μ A* HV
    0 0.821 2 376.7 145.8 223.0 219.8 168.6 402.7 1.305 0.196 0.058 26.43
    0 0.828 8 395.1 165.4 234.5 242.0 176.2 452.4 1.371 0.188 0.059 25.43
    20 0.808 1 480.9 225.9 254.1 310.9 192.6 478.9 1.614 0.243 0.056 21.78
    25 0.803 8 507.5 245.1 259.6 332.5 197.4 494.3 1.684 0.252 0.054 20.92
    30 0.799 9 530.8 264.2 265.1 353.1 201.2 507.2 1.751 0.260 0.055 20.05
    35 0.796 3 552.8 282.7 269.7 372.8 204.3 518.2 1.824 0.268 0.056 19.22
    40 0.792 9 589.8 320.1 274.5 410.1 206.4 530.2 1.986 0.284 0.059 17.24
    45 0.789 6 593.2 329.3 278.1 417.3 208.5 535.3 2.001 0.286 0.061 17.19
    50 0.786 5 613.0 341.3 281.8 431.8 210.3 542.7 2.053 0.290 0.062 16.69
    55 0.783 6 632.8 360.7 285.4 451.4 211.9 549.6 2.130 0.297 0.064 15.94
    下载: 导出CSV
  • [1] Lu Y, Yang J F, Li J L. Fabrication of porous silicon nitride with high porosity by carbothermal reduction-reaction bonding[J]. J Inorg Mater, 2013, 28: 469-473. doi: 10.3724/SP.J.1077.2013.12381
    [2] Salamat A, Hector A L, Kroll P, et al. Nitrogen-rich transition metal nitrides[J]. Coord Chem Rev, 2013, 257: 2063-2072. doi: 10.1016/j.ccr.2013.01.010
    [3] Leinenweber K, O'Keefee M, Somayazulu M, et al. Synthesis and structure refinement of the spinel, γ-Ge3N4[J]. Chem Eur J, 1999, 5: 3076-3078. doi: 10.1002/(SICI)1521-3765(19991001)5:10<3076::AID-CHEM3076>3.0.CO;2-D
    [4] Wang H, Chen Y, Kaneta Y, et al. First-principles investigation of the structural, electronic and optical properties of olivine-Si3N4 and olivine-Ge3N4[J]. J Phys: Condens Matter, 2006, 18: 10663-10676. doi: 10.1088/0953-8984/18/47/012
    [5] Soignard E, Somayazulu M, Dong J J, et al. High pressure-high temperature synthesis and elasticity of the cubic nitride spinel γ-Si3N4[J]. J Phys: Condens Matter, 2000, 13: 557-563. http://adsabs.harvard.edu/abs/2001JPCM...13..557S
    [6] Oba F. Effective doping in cubic Si3N4 and Ge3N4: A first-principles study[J]. J Am Ceram Soc, 2002, 85: 97-100. doi: 10.1111/j.1151-2916.2002.tb00046.x/abstract
    [7] Dong J J, Sankey O F, Deb S K, et al. Theoretical study of β-Ge3N4 and its high pressure spinel γ phase[J]. Phys Rev B, 2000, 61: 11979. doi: 10.1103/PhysRevB.61.11979
    [8] Ching W Y, Mo S D, Ouyang L Z. Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4 and c-GeSi2N4[J]. Phys Rev B, 2001, 63: 245110. doi: 10.1103/PhysRevB.63.245110
    [9] Yang M, Wang S J, Feng Y P, et al. Electronic structure of germanium nitride considered for gate dielectrics[J]. J Appl Phys, 2007, 102: 013507. doi: 10.1063/1.2747214
    [10] He H L, Sekine T, Kobayashi T, et al. Phase transformation of germanium nitride(Ge3N4)under shock wave compression[J]. J Appl Phys, 2001, 90: 4403-4406. doi: 10.1063/1.1407851
    [11] Wang Z W, Zhao Y S, Schiferl D, et al. Threshold pressure for disappearance of size-induced effect in spinel-structure Ge3N4 nanocrystals[J]. J Phys Chem B, 2003, 107: 14151. doi: 10.1021/jp036436t
    [12] McMillan P F, Deb S K, Dong J J. High-pressure metastable phase transitions in β-Ge3N4 studied by Raman spectroscopy[J]. J Raman Spectr, 2003, 34: 567-577. doi: 10.1002/jrs.1007
    [13] Molina B, Sansores L E. Electronic structures of Ge3N4 possible structures[J]. Int J Quant Chem, 2000, 80: 249-257. doi: 10.1002/1097-461X(2000)80:2<249::AID-QUA19>3.0.CO;2-9
    [14] Gao S P, Cai G H, Xu Y. Band structures for Ge3N4 polymorphs studies by DFT-LDA and GWA[J]. Compt Mater Sci, 2013, 67: 292-295. doi: 10.1016/j.commatsci.2012.09.008
    [15] Duan Y, Zhang K, Xie X. Electronic structural properties of β-C3N4, β-Si3N4 and β-Ge3N4[J]. Phys Stat Sol B, 1997, 200: 499-508. doi: 10.1002/1521-3951(199704)200:2<499::AID-PSSB499>3.0.CO;2-V
    [16] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140: A1133-A1138. doi: 10.1103/PhysRev.140.A1133
    [17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. doi: 10.1103/PhysRevLett.77.3865
    [18] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13: 5188-5192. doi: 10.1103/PhysRevB.13.5188
    [19] Blanco M A, Francisco E, Luańa V. GIBBS, isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model[J]. Comput Phys Commun, 2004, 158: 57-72. doi: 10.1016/j.comphy.2003.12.001
    [20] Hill R. The elastic behaviour of a crystalline aggregate[J]. Proc Phys Soc, 1952, 65: 349-354. doi: 10.1088/0370-1298/65/5/307
    [21] Chung D H, Buessem W R. The elastic anisotropy of crystals[J]. J Appl Phys, 1967, 38: 2535-2540. doi: 10.1063/1.1709944
    [22] Guechi N, Bouhemadou A, Guechi A, et al. First-principles prediction of the structural, elastic, electronic and optical properties of the Zintl phases MIn2P2(M=Ca, Sr)[J]. J Alloys Compd, 2013, 577: 587-599. doi: 10.1016/j.jallcom.2013.07.003
    [23] Dai J H, Song Y, Yang R. Influences of alloying elements and oxygen on the stability and elastic properties of Mg17Al12[J]. J Alloys Compd, 2014, 595: 142-147. doi: 10.1016/j.jallcom.2014.01.171
    [24] Chen X Q, Niu H Y, Li D Z, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19: 1275-1281. doi: 10.1016/j.intermet.2011.03.026
    [25] Sevik C, Bulutay C. Theoretical study of the insulating oxides and nitrides, SiO2, GeO2, Al2O3, Si3N4, and Ge3N4[J]. J Mater Sci, 2007, 42: 6555-6565. doi: 10.1007/s10853-007-1526-9
    [26] Luo Y S, Cang Y P, Dong C. Determination of the finite-temperature anisotropic elastic and thermal properties of Ge3N4: A first-principles study[J]. Comput Conden Matter, 2014, 1: 1-7. doi: 10.1016/j.cocom.2014.08.001
    [27] Soignard E, McMillan P F, Hejny C, et al. Pressure-induced transformations in α-and β-Ge3N4, in situ studies by synchrotron X-ray diffraction[J]. J Solid State Chem, 2004, 177: 299-311. doi: 10.1016/j.jssc.2003.08.021
    [28] Jhi S H, Ihm J, Louie S G, et al. Electronic mechanism of hardness enhancement in transition-metal carbonitrides[J]. Nature, 1999, 399: 132-134. doi: 10.1038/20148
    [29] Pugh S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Philos Mag, 1954, 45: 823-843. doi: 10.1080/14786440808520496
    [30] Kroll P. Pathways to metastable nitride structures[J]. J Solid State Chem, 2003, 176: 530-537. doi: 10.1016/S0022-4596(03)00300-1
    [31] Clausius R. On a modified form of the second fundamental theorem in the mechanical theory of heat[J]. Philos Mag, 2012, 12: 81-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/14786445608642141
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  6427
  • HTML全文浏览量:  2526
  • PDF下载量:  221
出版历程
  • 收稿日期:  2014-11-12

目录

    /

    返回文章
    返回