扩散时间对乙烯-空气燃爆特性的影响

杨理 饶国宁 解立峰 王永旭 彭金华

杨理, 饶国宁, 解立峰, 王永旭, 彭金华. 扩散时间对乙烯-空气燃爆特性的影响[J]. 高压物理学报, 2015, 29(5): 369-376. doi: 10.11858/gywlxb.2015.05.007
引用本文: 杨理, 饶国宁, 解立峰, 王永旭, 彭金华. 扩散时间对乙烯-空气燃爆特性的影响[J]. 高压物理学报, 2015, 29(5): 369-376. doi: 10.11858/gywlxb.2015.05.007
YANG Li, RAO Guo-Ning, XIE Li-Feng, WANG Yong-Xu, PENG Jin-Hua. Effect of Diffusion Time on Deflagration and Detonation Parameters of Ethene-Air[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 369-376. doi: 10.11858/gywlxb.2015.05.007
Citation: YANG Li, RAO Guo-Ning, XIE Li-Feng, WANG Yong-Xu, PENG Jin-Hua. Effect of Diffusion Time on Deflagration and Detonation Parameters of Ethene-Air[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 369-376. doi: 10.11858/gywlxb.2015.05.007

扩散时间对乙烯-空气燃爆特性的影响

doi: 10.11858/gywlxb.2015.05.007
基金项目: 国家自然科学基金青年基金(11102091);教育部博士点基金(20113219110010)
详细信息
    作者简介:

    杨理(1991—), 男, 硕士研究生, 主要从事气相、多相爆轰实验研究.E-mail:yangli_hb@aliyun.com

    通讯作者:

    饶国宁(1978—),男,博士,讲师,主要从事爆轰理论及数值模拟研究.E-mail:njraoguoning@163.com

  • 中图分类号: O384

Effect of Diffusion Time on Deflagration and Detonation Parameters of Ethene-Air

  • 摘要: 为探究在有限空间中,初始压力为0.25 MPa、两处乙烯气体瞬时源在不同扩散时间下的燃爆特性,在内径200 mm、高5 400 mm的立式激波管中,采用上下进气方式,在强起爆条件下,测定5个不同扩散时间下3种浓度的乙烯-空气混合气体(C2H4-Air)的燃爆参数。实验结果表明,扩散时间大于1 h后,3种浓度的C2H4-Air混合气体燃爆参数趋于一致。4.00%(体积分数)C2H4-Air在当前实验条件下未能达到爆轰。6.67%C2H4-Air在5个扩散时间均可达到爆轰,扩散时间为1 h时的爆压、爆速分别为4.24 MPa、1 719 m/s。8.89%C2H4-Air在0.08 h扩散时间下只发生爆燃,扩散时间为0.5 h及以上发生爆轰,扩散时间为1 h时的爆压、爆速分别为4.31 MPa、1 813 m/s。通过烟熏技术捕捉到6.67%、8.89%的C2H4-Air混合气体的爆轰波胞格,胞格宽度分别为8.22、14.15 mm,长宽比分别为1.44、1.57。

     

  • 图  立式激波管示意图

    Figure  1.  Structure of the vertical shock tube

    图  不同扩散时间下C2H4-Air混合气体(4.00%)的燃爆参数

    Figure  2.  Deflagration parameters of C2H4-Air mixed gas (4.00%) with different diffusion time

    图  不同起爆能量下C2H4-Air混合气体(4.00%)的燃爆参数

    Figure  3.  Deflagration parameters of C2H4-Air mixed gas (4.00%) with different ignition energies

    图  不同扩散时间下C2H4-Air混合气体(6.67%)的爆轰参数

    Figure  4.  Detonation parameters of C2H4-Air mixed gas (6.67%) with different diffusion time

    图  不同扩散时间下C2H4-Air混合气体(8.89%)的燃爆参数

    Figure  5.  Deflagration and detonation parameters of C2H4-Air mixed gas (8.89%)with different diffusion time

    图  C2H4-Air混合气体燃爆参数随扩散时间的变化趋势

    Figure  6.  Deflagration and detonation parameters of C2H4-Air mixed gas changing with different diffusion time

    图  C2H4-Air混合气体爆轰胞格实物图

    Figure  7.  Photos of the detonation cell size of C2H4-Air mixed gas

    表  1  传感器位置和量程

    Table  1.   Position and range of pressure sensor

    No. Height/(m) Measurement range/(MPa)
    2# 1.4 10
    3# 1.9 10
    4# 2.4 10
    5# 2.9 10
    6# 3.4 10
    7# 3.9 10
    下载: 导出CSV

    表  2  起爆药量与能量输出

    Table  2.   Mass and output energy of ignited materials

    Initiation source Output energy/(kJ) Initiation energy per area/(MJ/m2)
    1D 5.94 0.19
    1D+3g C4 23.53 0.75
    1D+5g C4 35.25 1.12
    下载: 导出CSV

    表  3  C2H4-Air混合气体爆轰胞格尺寸数据

    Table  3.   Detonation cell size of C2H4-Air

    C2H4
    content
    Length L/(mm) Width λ/(mm) L/λ
    Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation
    6.67% 11.70 2.28 8.22 1.93 1.44 0.10
    8.89% 22.13 5.14 14.15 3.30 1.57 0.10
    下载: 导出CSV
  • [1] 梁金虎, 胡弘浩, 王苏, 等.低稀释度条件下乙烯点火特性的激波管研究[J].力学学报, 2014, 46(1): 155-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201401019

    Liang J H, Hu H H, Wang S, et al. Shock tube study of ethylene ignition delay characteristics atlowdilution[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 155-159. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201401019
    [2] 张博, Lee J H S, 白春华. C2H4-O2混合气体直接起爆的临界能量[J].爆炸与冲击, 2012, 32(2): 113-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201202001

    Zhang B, Lee J H S, Bai C H. Critical energy for direct initiation of C2H4-O2 mixture[J]. Explosion and Shock Waves, 2012, 32(2): 113-120. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201202001
    [3] 周凯元, 李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击, 2000, 20(2): 137-142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200002008

    Zhou K Y, Li Z F. Flame front acceleration of propane-airdeflagration in straight tubes[J]. Explosion and Shock Waves, 2000, 20(2): 137-142. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200002008
    [4] Phylaktou H, Andrews G, Herath P. Fast flame speeds and rates of pressurerise in the initial period of gas explosions in large L/D cylindrical enclosures[J]. J Loss Prevent Process Ind, 1990, 3(4): 355-364. doi: 10.1016/0950-4230(90)80005-U
    [5] Amyotte P R, Patil S, Pegg M J. Confined and vented ethylene-air deflagrationsat initially elevated pressures and turbulence levels[J]. Process Saf Environ, 2002, 80(B): 71-77. http://www.sciencedirect.com/science/article/pii/S0957582002710069
    [6] Movileanu C, Razus D, Oancea D. Additive effects on explosion pressure andflame temperature of stoichiometric ethylene-air mixture in closed vessels[J]. Revue Roumaine de Chimie, 2011, 56(1): 11-17. http://www.researchgate.net/publication/223597058_Additive_effects_on_explosion_pressure_and_flame_temperature_of_stoichiometric_ethylene-air_mixture_in_closed_vessels
    [7] 姚干兵.液态碳氢燃料云雾爆轰及其抑制与泄放研究[D].南京: 南京理工大学, 2006: 16-18.

    Yao G B. Investigation on detonation characteristics of liquid fuel-air mixtures, explosion suppression andventing[D]. Nanjing: Nanjing University of Science & Technology, 2006: 16-18. (in Chinese)
    [8] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京: 兵器工业出版社, 2009: 4-5.

    Zhang B P, Zhang Q M, Huang F L. Detonation Physics[M]. Beijing: The Publishing House of Ordnance Industry, 2009: 4-5. (in Chinese)
    [9] Liu X L, Zhang Q. Influence of initial pressure and temperature on flammability limits of hydrogen-air[J]. Int J Hydrogen Energ, 2014, 39(12): 6774-6782. doi: 10.1016/j.ijhydene.2014.02.001
    [10] Movileanu C, Gosa V, Razus D. Explosion of gaseous ethylene-air mixtures in closed cylindrical vessels with central ignition[J]. J Hazard Mater, 2012, 235: 108-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14cdc43b62e120961733577424a926e0
    [11] Knystautas R, Guirao C, Lee J H. Measurement of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits[J]. Prog Astronaut Aeronaut, 1984, 94: 23-37. http://www.researchgate.net/publication/279706816_MEASUREMENTS_OF_CELL_SIZE_IN_HYDROCARBON-AIR_MIXTURES_AND_PREDICTIONS_OF_CRITICAL_TUBE_DIAMETER_CRITICAL_INITIATION_ENERGY_AND_DETONABILITY_LIMITS
    [12] Denisov Y N, Troshin Y K. Pulsating and spinning detonation of gaseous mixtures in tubes[J]. Dokl Akad Nauk, SSSR(Phys-Chem Sec), 1959, 125(1): 110-113. http://www.researchgate.net/publication/287170280_Pulsating_and_spinning_detonation_of_gaseous_mixture_in_tubes
    [13] Strehlow R A. Transverse waves in detonations: Ⅱ. Structure and spacing in H2-O2, C2H2-O2, C2H4-O2 and CH4-O2 systems[J]. AIAA, 1969, 7(3): 492-496. doi: 10.2514/3.5134
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  6726
  • HTML全文浏览量:  2308
  • PDF下载量:  195
出版历程
  • 收稿日期:  2014-05-22

目录

    /

    返回文章
    返回