Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock

LI Ying DU Jian-Guo XIE Chao ZHOU Zhi-Hua

李营, 杜建国, 谢超, 周志华. 泥质岩体系高温高压变质过程中温度对石榴子石Fe-Mg分异的影响[J]. 高压物理学报, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002
引用本文: 李营, 杜建国, 谢超, 周志华. 泥质岩体系高温高压变质过程中温度对石榴子石Fe-Mg分异的影响[J]. 高压物理学报, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002
LI Ying, DU Jian-Guo, XIE Chao, ZHOU Zhi-Hua. Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002
Citation: LI Ying, DU Jian-Guo, XIE Chao, ZHOU Zhi-Hua. Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 329-336. doi: 10.11858/gywlxb.2015.05.002

Effect of Temperature on Fe-Mg Partition of Garnet during the High Pressure and High Temperature Metamorphism of Pelitic Rock

doi: 10.11858/gywlxb.2015.05.002
More Information
    Author Bio:

    LI Ying(1978—), male, doctor, associate professor, major in fluid geochemistry and experimental geochemistry.E-mail:subduction6@hotmail.com

  • 摘要: 在700~780 ℃、2.1~2.9 GPa温压范围内, 对天然泥质岩体系进行了高温高压实验, 对体系中生成的石榴子石的Fe-Mg组成受温度的影响进行了研究。实验产物中石榴子石主要以MgO和FeO为主要组成。石榴子石中镁铝榴石和铁铝榴石含量高于88%(质量分数), 钙铝榴石和锰铝榴石含量低于12%。石榴子石中FeO和MgO含量与温度呈现明显线性关系, 但与压力没有呈现线性关系。研究结果确定了具有复杂化学组成的天然泥质岩体系中石榴子石Fe-Mg组成特征随温度的变化趋势, 为确定泥质岩原岩组成的榴辉岩相岩石的变质温度提供了实验研究结果。

     

  • Figure  1.  Setup of the cell for high pressure and high temperature experiment

    Figure  2.  Back scattered electron images of the starting material and run products

    Qz:quartz, Chl:chlorite, Ms:muscovite, Ilm:ilmenite, Ab:albite, Grt:garnet, Amp:amphibole, Rt:rutile, Jd:jadeite, Ky:kyanite, St:staurolite

    Figure  3.  Variations of FeO and MgO contents (mass fraction, w) in garnets ((a)-(d)) and muscovites ((e), (f)) with temperature

    Figure  4.  Variations of FeO and MgO contents (mass fraction, w) in garnets and muscovites with pressure

    Table  1.   Phases in the starting material and high pressure experimental run products

    Sample No. p/(GPa) T/(℃) t/(h) Minerals (Microprobe & XRD)
    LS26 Starting material Qz, Chl, Ms, Ilm, Ab
    G17 2.1 720 351 Qz, Grt, Amp, Ms, Rt
    G12 2.4 710 351 Qz, Grt, Amp, Jd, Ms
    G4 2.8 750 301 Qz, Grt, Jd, Ms, Ky, Rt
    G19 2.9 700 356 Qz, Grt, Jd, Ms, Rt, St
    G16 2.9 780 382 Coe, Grt, Ms, Ky, Rt, Melt
    下载: 导出CSV

    Table  2.   Selected electron microprobe analyses of garnet in high pressure experimental run products

    Sample SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O Total Grs/(%) Pyp/(%) Alm/(%) Sps/(%)
    G17 36.45 0.74 20.29 35.44 1.88 2.53 2.64 0.12 100.10 8 10 78 4
    36.86 0.59 21.25 35.11 0.53 4.08 1.50 0.15 100.07 4 16 78 1
    36.79 0.40 21.03 35.40 0.61 4.02 1.37 0.24 99.86 4 16 79 1
    37.05 0.58 20.86 35.36 0.47 3.96 1.53 0.23 100.03 4 16 79 1
    36.78 0.99 20.79 35.47 0.91 2.96 2.36 0.14 100.40 7 12 79 2
    G12 36.65 0.39 21.30 34.80 1.03 3.17 2.28 0.18 99.80 7 13 78 2
    36.50 0.91 21.08 35.13 1.48 3.06 1.97 0.17 100.30 6 12 78 3
    36.85 1.31 21.09 35.52 0.84 2.83 2.15 0.21 100.80 6 11 80 2
    36.44 0.76 21.26 34.96 1.44 3.00 2.15 0.19 100.20 6 12 78 3
    36.59 0.39 21.04 35.03 1.64 2.88 2.03 0.17 99.77 6 11 78 4
    G4 36.75 0.61 21.04 33.25 0.64 5.23 0.93 0.29 98.74 3 21 74 1
    36.68 1.11 20.84 33.05 0.66 5.31 0.93 0.31 98.89 3 21 73 1
    36.62 0.59 20.84 33.54 0.67 5.37 1.06 0.23 98.92 3 21 73 2
    40.33 0.50 21.47 30.99 0.68 6.35 1.01 0.39 101.71 3 25 69 2
    37.17 0.47 21.18 32.57 0.73 6.18 0.90 0.26 99.46 3 24 70 2
    G19 36.24 0.61 20.63 36.52 1.35 2.64 1.28 0.22 99.49 4 11 81 3
    36.90 0.50 20.90 35.10 0.76 4.02 1.14 0.16 99.47 3 16 78 2
    36.19 0.59 20.48 36.72 1.44 2.58 1.30 0.11 99.42 4 10 82 3
    35.87 0.59 20.60 36.34 1.41 2.66 1.30 0.14 98.91 4 11 82 3
    36.61 0.50 20.75 36.29 0.77 3.61 1.04 0.08 99.65 3 14 80 2
    G16 35.90 0.92 20.58 32.38 1.62 3.96 2.71 0.09 98.18 8 16 72 4
    36.15 0.77 20.87 32.44 0.81 6.07 1.31 0.27 98.68 4 24 69 2
    40.81 0.57 20.22 30.38 0.50 7.00 0.85 1.50 101.83 2 27 62 1
    40.63 0.30 19.57 27.09 0.17 7.35 0.54 0.49 96.14 2 31 64 0
    37.91 0.56 20.63 31.14 0.51 7.33 0.99 0.24 99.31 3 29 66 1
    下载: 导出CSV
  • [1] Nimis P, Grütter H. Internally consistent geothermometers for garnet peridotites and pyroxenites[J]. Contrib Mineral Petr, 2010, 159(3): 411-427. doi: 10.1007/s00410-009-0455-9
    [2] Müller T, Dohmen R, Becker H W, et al. Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers[J]. Contrib Mineral Petr, 2013, 166(6): 1563-1576. doi: 10.1007/s00410-013-0941-y
    [3] Matjuschkin V, Brey G P, Höfer H E, et al. The influence of Fe3+ on garnet-orfthopyroxene and garnet-olivine geothermometers[J]. Contrib Mineral Petr, 2014, 167(2): 1-10. doi: 10.1007/s00410-014-0972-z
    [4] Ague J J, Carlson W D. Metamorphism as garnet sees it: The kinetics of nucleation and growth, equilibration, and diffusional relaxation[J]. Elements, 2013, 9(6): 439-445. doi: 10.2113/gselements.9.6.439
    [5] Spear F S. The duration of near-peak metamorphism from diffusion modelling of garnet zoning[J]. J Metamorph Geol, 2014, 32(8): 903-914. doi: 10.1111/jmg.12099
    [6] Faak K, Coogan L A, Chakraborty S. A new Mg-in-plagioclase geospeedometer for the determination of cooling rates of mafic rocks[J]. Geochim Cosmochim Ac, 2014, 140: 691-707. doi: 10.1016/j.gca.2014.06.005
    [7] Das K, Tomioka N, Bose S. On oriented ilmenite needles in garnet porphyroblasts from deep crustal granulites: Implications for fluid evolution and cooling history[J]. Lithos, 2013, 156: 230-240. http://www.sciencedirect.com/science/article/pii/S0024493712004434
    [8] Viete D R, Hermann J, Lister G S, et al. The nature and origin of the Barrovian metamorphism, Scotland: Diffusion length scales in garnet and inferred thermal time scales[J]. J Geol Soc, 2011, 168(1): 115-132. doi: 10.1144/0016-76492009-087
    [9] Likhanov I I, Reverdatto V V, Kozlov P S, et al. Three metamorphic events in the precambrian p-T-t history of the Transangarian Yenisey ridge recorded in garnet grains in metapelites[J]. Petrology, 2013, 21(6): 561-578. doi: 10.1134/S0869591113060040
    [10] Chakraborty S, Ganguly J. Compositional zoning and cation diffusion in aluminosilicate garnets[C]//Ganguly J. Diffusion, Atomic Ordering and Mass Transport, Advances in Physical Geochemistry. Berlin: Springer Berlin Heidelberg, 1991: 121-175.
    [11] Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths[M]. Chantilly, VA: Mineralogical Society of America, 1993: 350.
    [12] Ellis D J, Green D H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria[J]. Contrib Mineral Petr, 1979, 71(1): 13-22. doi: 10.1007/BF00371878
    [13] Berman R G. Mixing properties of Ca-Mg-Fe-Mn garnets[J]. Am Mineral, 1990, 75(3/4): 328-344. http://ci.nii.ac.jp/naid/80005202158
    [14] Tasumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks[J]. J Volcanol Geoth Res, 1986, 29(1): 293-309. http://www.sciencedirect.com/science/article/pii/0377027386900491
    [15] Kogiso T, Tatsumi Y, Nakano S. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts[J]. Earth Planet Sc Lett, 1997, 148(1/2): 193-205. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-3SWJNSY-G&_user=6894003&_coverDate=04%2F30%2F1997&_rdoc=15&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235801%231997%23998519998%23567141%23FLP%23display%23Volume)&_cdi=5801&_sort=d&_docancho
    [16] Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments: Implication for arc and ocean island magmatism[J]. Isl Arc, 1999, 8(1): 38-46. doi: 10.1046/j.1440-1738.1999.00217.x
    [17] 李营, 唐红峰, 刘丛强, 等.泥质岩脱水作用的高压差热实验研究[J].岩石学报, 2005, 21(3): 986-992. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503036

    Li Y, Tang H F, Liu C Q, et al. Experimental study on the dehydration of pelite by high-pressure defferential thermal analysis[J]. Acta Petrol Sin, 2005, 21(3): 986-992. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503036
    [18] Li Y, Massonne H J, Willner A, et al. Dehydration of clastic sediments in subduction zones: Theoretical study using thermodynamic data of minerals[J]. Isl Arc, 2008, 17(4): 577-590. doi: 10.1111/j.1440-1738.2008.00640.x
    [19] Li Y, Du J G. Thermodynamic calculation on the phase transformation and water release of subducted sediment from 10 to 35 kbar[J]. J Phys Chem Solids, 2010, 71(8): 1077-1083. doi: 10.1016/j.jpcs.2010.03.010
    [20] Zou Y, Irifune T. Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature[J]. J Miner Petrol Sci, 2012, 107(5): 197-205. doi: 10.2465/jmps.120318
    [21] Bobrov A V, Litvin Y A, Kuzyura A V, et al. Partitioning of trace elements between Na-bearing majoritic garnet and melt at 8.5 GPa and 1 500-1 900 ℃[J]. Lithos, 2014, 189: 159-166. doi: 10.1016/j.lithos.2013.11.003
    [22] 唐红峰, 刘丛强, 谢国刚.区域变质作用中岩石的质量迁移和元素活动——以庐山双桥山群变泥质岩为例[J].地质论评, 2000, 46(3): 245-254. http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003004.htm

    Tang H F, Liu C Q, Xie G G. Mass transfer and element mobility of rocks during regional metamorphism-A case study of metamorphosed pelites from the shuangqiaoshan group in Lushan[J]. Geol Rev, 2000, 46(3): 245-254. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-DZLP200003004.htm
    [23] Mirwald P W, Getting I C, Kennedy G C. Low-friction cell for piston-cylinder high-pressure apparatus[J]. J Geophys Res, 1975, 80(11): 1519-1525. doi: 10.1029/JB080i011p01519
    [24] Massonne H J, Schreyer W. High-pressure syntheses and X-ray properties of white micas in the system K2O-MgO-Al2O3-SiO2-H2O[J]. Neues Jb Miner Abh, 1986, 153(2): 177-215. http://www.researchgate.net/publication/291980972_High-pressure_syntheses_and_X-ray_properties_of_white_micas_in_the_system_K2O-MgO-Al2O3-SiO2-H2O
    [25] Kitahara S, Kennedy G C. The quartz-coesite transition[J]. J Geophys Res, 1964, 69(24): 5395-5400. doi: 10.1029/JZ069i024p05395
    [26] Mirwald P W, Massonne H J. The low-high quartz and quartz-coesite transition to 40 kbar between 600 and 1 600 ℃ and some reconnaissance data on the effect of NaAlO2 component on the low quartz-coesite transition[J]. J Geophys Res, 1980, 85(B12): 6983-6990. doi: 10.1029/JB085iB12p06983
    [27] Akella J. Quartz-coesite transition and the comparative friction measurements in piston-cylinder apparatus using talk-alsimag-glass(TAG)and NaCl cells[J]. Neues Jahrb Mineral Monatsh, 1979, 5: 217-224. http://www.researchgate.net/publication/286335823_Quartz_coesite_transition_and_the_comparative_friction_measurements_in_piston-cylinder_apparatus_using_talc-alsimag-glass_TAG_and_NaCl_high-pressure_cells
    [28] Ganguly J, Cheng W J, Chakraborty S. Cation diffusion in aluminosilicate garnets: Experimental determination in pyroxene-almandine diffusion couples[J]. Contrib Mineral Petr, 1998, 131(2/3): 171-180.
    [29] Holland T J B, Powell R. An internally consistent thermodynamic data set for phases of petrological interest[J]. J Metamorph Geol, 1998, 16(3): 309-343. doi: 10.1111/j.1525-1314.1998.00140.x
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  6786
  • HTML全文浏览量:  2076
  • PDF下载量:  52
出版历程

目录

    /

    返回文章
    返回