预加温条件下高强铝合金动态屈服及层裂行为的研究

陈涛 蒋招绣 辛铭之 申海艇 王永刚

陈涛, 蒋招绣, 辛铭之, 申海艇, 王永刚. 预加温条件下高强铝合金动态屈服及层裂行为的研究[J]. 高压物理学报, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001
引用本文: 陈涛, 蒋招绣, 辛铭之, 申海艇, 王永刚. 预加温条件下高强铝合金动态屈服及层裂行为的研究[J]. 高压物理学报, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001
CHEN Tao, JIANG Zhao-Xiu, XING Ming-Zhi, SHEN Hai-Ting, WANG Yong-Gang. Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001
Citation: CHEN Tao, JIANG Zhao-Xiu, XING Ming-Zhi, SHEN Hai-Ting, WANG Yong-Gang. Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 321-328. doi: 10.11858/gywlxb.2015.05.001

预加温条件下高强铝合金动态屈服及层裂行为的研究

doi: 10.11858/gywlxb.2015.05.001
基金项目: 国家自然科学基金(11272164, 11072119)
详细信息
    作者简介:

    陈涛:陈  涛(1977—), 男, 博士研究生, 主要从事桥梁结构抗冲击与安全防护方面研究.E-mail:9350750@qq.com

    通讯作者:

    王永刚(1976—), 男,博士,教授,主要从事冲击动力学研究.E-mail: wangyonggang@nbu.edu.cn

  • 中图分类号: O521.2;O347.1

Dynamic Yield and Spall Properties of High-Strength Aluminum Alloys at Normal and Elevated Temperatures

  • 摘要: 采用一级轻气炮加载和电阻丝环向热传导加热方式, 对两种典型的高强铝合金(2024-T4和7075-T6)进行了不同预加温度(范围为298~750 K)下的层裂实验研究。基于自由面速度剖面的实测结果,获得了不同温度下两种铝合金材料的雨贡纽弹性极限和层裂强度,结果显示, 两种铝合金的雨贡纽弹性极限和层裂强度均随温度的升高呈线性衰减。同时,采用内聚力模型对两种铝合金的预加温层裂实验进行了数值模拟研究,讨论了模型参数的物理含义及确定方法,计算得到的自由面速度剖面与实验结果的吻合性很好,表明内聚力模型适用于描述层裂过程中由损伤演化引起的能量耗散行为。

     

  • 图  1(a)  2024-T4铝合金的金相微结构组织

    Figure  1(a).  Optical micrographs of 2024-T4 aluminum alloy (Left, xOy section; right, 3-D volume)

    图  1(b)  7075-T6铝合金的金相微结构组织

    Figure  1(b).  Optical micrographs of 7075-T6 aluminum alloy (Left, xOy section; right, 3-D volume)

    图  预加温平板撞击实验装置

    Figure  2.  Schematic of the sample-heater assembly for planar impact experiments with sample pre-heating

    图  在室温和最高温度下实测的两种铝合金自由面速度波剖面

    Figure  3.  Typical free surface velocity profiles of 2 aluminum alloys measured at room and maximum test temperature

    图  不同预加温度下两种铝合金的自由面速度剖面

    Figure  4.  Free surface velocity profiles of 2 aluminum alloys measured by DISAR at different pre-heated temperatures

    图  归一化雨贡纽弹性极限和层裂强度随归一化温度的变化曲线

    Figure  5.  Normalized HEL strength and spall strength as a function of temperature for 2024-T4 Al and 7075-T6 Al

    图  有限元模型示意图

    Figure  6.  Analytical finite element model

    图  数值模拟得到的两种铝合金的内聚应力-位移曲线

    Figure  7.  Curves of cohesive stress versus displacement for 2024-T4 Al and 7075-T6 Al in simulation

    图  能量耗散密度与温度的相关性

    Figure  8.  Energy release density as a function of temperature

    表  1  实验条件与计算结果

    Table  1.   Experimental conditions and calculated results

    Material T/(K) v/(m/s) ρ/(g/cm3) cb/(m/s) cl/(m/s) σHEL/(MPa) σspall/(MPa)
    2024-T4 Al 298 286 2.785 5 326 6 317 1 110 1 560
    448 270 2.753 5 340 6 225 685 1 310
    548 257 2.728 5 344 6 164 336 940
    653 290 2.698 5 349 6 101 214 770
    713 292 2.681 5 352 6 068 98 690
    7075-T6 Al 298 265 2.804 5 200 6 186 876 1 390
    440 280 2.773 5 197 6 107 576 1 180
    558 259 2.744 5 197 6 036 447 1 000
    633 288 2.723 5 199 5 995 229 830
    743 260 2.690 5 206 5 935 24 560
    下载: 导出CSV

    表  2  不同温度下两种铝合金材料的本构参数及内聚力模型参数

    Table  2.   Constitutive and cohesive model paramenters of 2 aluminum alloys at different temperatures

    Material T/(K) σy/(MPa) G/(GPa) C/(m/s) S0 γ0 σmax/(MPa) δmf α
    2024-T4 Al 298 430 28.6 5 326 1.33 2 1 560 0.20 4
    448 320 26.0 5 340 1.33 2 1 310 0.16 4
    548 154 24.2 5 344 1.33 2 940 0.19 4
    653 92 22.3 5 349 1.33 2 770 0.20 4
    713 41 21.3 5 352 1.33 2 690 0.20 4
    7075-T6 Al 298 350 26.7 5 200 1.338 2.2 1 390 0.10 4
    440 250 24.4 5 197 1.338 2.2 1 180 0.13 4
    558 235 22.4 5 197 1.338 2.2 1 000 0.10 4
    633 120 21.2 5 199 1.338 2.2 830 0.10 4
    743 25 19.4 5 206 1.338 2.2 560 0.36 4
    下载: 导出CSV
  • [1] Antoun T, Seaman L, Curran D R, et al. Spall Fracture[M]. Berlin: Springer, 2003.
    [2] Curran D R, Seaman L, Shockey D A. Dynamic failure of solids[J]. Phys Rep, 1987, 147(5/6): 253-388. http://www.sciencedirect.com/science/article/pii/0370157387900494
    [3] 贺红亮.动态拉伸断裂的物理判据研究[J].高压物理学报, 2013, 27(2): 153-161. doi: 10.11858/gywlxb.2013.02.001

    He H L. Physical criterion of dynamic tensile fracture[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153-161. (in Chinese) doi: 10.11858/gywlxb.2013.02.001
    [4] Williams C L, Ramesh K T, Dandekar D P. Spall response of 1100-O aluminum[J]. J Appl Phys, 2012, 111: 123528. doi: 10.1063/1.4729305
    [5] 王焕然, 王永刚, 贺红亮.基于微孔洞长大惯性机制的动态拉伸断裂模型构建[J].高压物理学报, 2012, 26(3): 294-300. doi: 10.11858/gywlxb.2012.03.008

    Wang H R, Wang Y G, He H L. Modeling of dynamic tensile fracture accounting for micro-inertia effect on void growth[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 294-300. (in Chinese) doi: 10.11858/gywlxb.2012.03.008
    [6] 桂毓林, 刘仓理, 王彦平, 等. AF1410钢的层裂断裂特性研究[J].高压物理学报, 2006, 20(1): 34-38. doi: 10.11858/gywlxb.2006.01.008

    Gui Y L, Liu C L, Wang Y P, et al. Spall fracture properties of AF1410 steel[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 34-38. (in Chinese) doi: 10.11858/gywlxb.2006.01.008
    [7] Wang Y G, Qi M L, He H L, et al. Spall failure of aluminum materials with different microstructures[J]. Mech Mater, 2014, 69: 270-279. doi: 10.1016/j.mechmat.2013.11.005
    [8] Grady D E. The spall strength of condensed matter[J]. J Mech Phys Solids, 1988, 36: 353-384. doi: 10.1016/0022-5096(88)90015-4
    [9] Kanel G I, Razorenov S V, Utkin A V, et al. The spall strength of metals at elevated temperatures[C]∥Schmidt S C, Tao W C. Shock Compression of Condensed Matter-1995. New York: American Institute of Physics, 1996: 503-506.
    [10] Chhabildas L C, Barker L M, Asay J R, et al. Spall strength measurements on shock-loaded refractory metals[C]//Schmidt S C, Johnson J N, Davison L W. Shock Compression of Condensed Matter-1989. Amsterdam: North-Holland, 1990: 429-432.
    [11] 谷卓伟, 金孝刚, 张清福, 等.材料预加热冲击压缩实验技术及高温下不锈钢的动态响应[J].高压物理学报, 1998, 12(3): 190-198. doi: 10.11858/gywlxb.1998.03.005

    Gu Z W, Jin X G, Zhang Q F, et al. A set of experimental device of preheating materials under shock compression and shock response of stainless steel with high temperatuer[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 190-198. (in Chinese) doi: 10.11858/gywlxb.1998.03.005
    [12] Zaretsky E B. Impact response of titanium from the ambient temperature to 1 000 ℃[J]. J Appl Phys, 2008, 104: 123505. doi: 10.1063/1.3042229
    [13] Zaretsky E B. Impact response of cobalt over the 300-1 400 K temperature range[J]. J Appl Phys, 2010, 108: 083525. doi: 10.1063/1.3501107
    [14] Zaretsky E B. Shock response of iron between 143 and 1 275 K[J]. J Appl Phys, 2009, 106: 023510. doi: 10.1063/1.3174442
    [15] Weng J D, Wang X, Ma Y, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Rev Sci Instrum, 2008, 79: 113101. doi: 10.1063/1.3020700
    [16] 王永刚, 陈登平, 贺红亮, 等.冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性[J].物理学报, 2006, 55(8): 4202-4207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200608070

    Wang Y G, Chen D P, He H L, et al. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading[J]. Acta Phys Sin, 2006, 55(8): 4202-4207. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200608070
    [17] Dassault Systèmes Simulia Corp. Abaqus Analysis User's Manual[Z]. Providence, RI: Dassault Systèmes Simulia Corp, 2007.
    [18] Zurek A K, Thissell W R, Johnson J N, et al. Micromechanics of spall and damage in tantalum[J]. J Mater Process Technol, 1996, 60: 261-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=za0ZC6SY0X6dNiwXWPad6Ya+e1w8dQ/j20JvnFWXor4=
    [19] Kanel G I, Razorenov S V, Fortov V E. Shock-wave compression and tension of solids at elevated temperatures: superheated crystal states, pre-melting, and anomalous growth of the yield strength[J]. J Phys Condens Matter, 2004, 16: S1007-S1016. doi: 10.1088/0953-8984/16/14/010
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  7023
  • HTML全文浏览量:  2119
  • PDF下载量:  156
出版历程
  • 收稿日期:  2014-05-25

目录

    /

    返回文章
    返回