人造金刚石的制备方法及其超高压技术

韩奇钢

韩奇钢. 人造金刚石的制备方法及其超高压技术[J]. 高压物理学报, 2015, 29(4): 313-320. doi: 10.11858/gywlxb.2015.04.012
引用本文: 韩奇钢. 人造金刚石的制备方法及其超高压技术[J]. 高压物理学报, 2015, 29(4): 313-320. doi: 10.11858/gywlxb.2015.04.012
HAN Qi-Gang. Preparation Methods and Ultra-High Pressure Technologies of Synthetic Diamonds[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 313-320. doi: 10.11858/gywlxb.2015.04.012
Citation: HAN Qi-Gang. Preparation Methods and Ultra-High Pressure Technologies of Synthetic Diamonds[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 313-320. doi: 10.11858/gywlxb.2015.04.012

人造金刚石的制备方法及其超高压技术

doi: 10.11858/gywlxb.2015.04.012
基金项目: 国家自然科学基金(11204102,51475207);高等学校博士学科点新教师基金(20120061120041);吉林大学超硬材料国家重点实验室开放课题(201410)
详细信息
    作者简介:

    韩奇钢(1983-),男,博士,副教授,主要从事高压科学与技术研究.E-mail: hanqg@jlu.edu.cn

  • 中图分类号: O521.3

Preparation Methods and Ultra-High Pressure Technologies of Synthetic Diamonds

  • 摘要: 介绍了天然金刚石的生长机理和人造金刚石的发展历史,从静压法、动压法和低压法3种方法概述了人造金刚石制备方法的研究现状;针对4种现今普遍使用的金刚石合成装置,即两面顶、四面顶、六面顶和分割球高压装置,阐述了其结构设计和使用现状;总结了金刚石行业目前存在的主要问题,并对其发展趋势进行了展望。

     

  • 图  膜生长法生长工业金刚石示意图[19]

    Figure  1.  Sketch of the synthesis of industrial diamonds by film deposition[19]

    图  膜生长法合成的工业金刚石[20]

    Figure  2.  Photos of the industrial diamonds by film deposition[20]

    图  温度梯度法生长宝石级金刚石单晶示意图[22]

    Figure  3.  Sketch of the synthesis of gem diamond by temperature gradient technique[22]

    图  温度梯度法合成出的宝石级金刚石及其制品[20]

    Figure  4.  Photos of gem diamonds by temperature gradient technique[20]

    图  5(a)  Belt式高压装置整体图[34]

    Figure  5(a).  Complete photo of the Belt-type high pressure apparatus[34]

    图  5(b)  Belt式高压装置局部放大图[34]

    Figure  5(b).  Partial enlarged view of the Belt-type high pressure apparatus[34]

    图  四面顶高压装置[36]

    Figure  6.  Photo of the tetrahedral high pressure apparatus[36]

    图  拉杆式六面顶高压装置[31]

    Figure  7.  Photo of the pillar-type cubic press[31]

    图  铰链式六面顶高温高压装置[37]

    Figure  8.  Photo of the hinge-type cubic high pressure apparatus[37]

    图  分割球式高压装置剖面图[40]

    Figure  9.  Cross-section of the split-sphere high pressure apparatus[40]

    图  10  俄罗斯科学院和加利福尼亚大学设计的分割球式高压装置[41-42]

    Figure  10.  Split-sphere high pressure apparatuses invented by Russian Academy of Sciences and University of California[41-42]

  • [1] Liebermann R C, Wang Y B. Characterization of sample environment in a uniaxial split-sphere apparatus[M]//Syono Y, Manghnani M H. High-Pressure Research: Application to Earth and Planetary Sciences. Washington DC: American Geophysical Union, 1992: 19-31.
    [2] Li B S, Chen G L, Gwanmesia G D, et al. Sound velocity measurements at mantle transition zone conditions of pressure and temperature using ultrasonic interferometry in a multianvil apparatus[M]//Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington DC: American Geophysical Union, 1998: 41-61.
    [3] Knoche R, Webb S L, Rubie D C. Measurements of acoustic wave velocities at p-T conditions of the Earth's mantle[M]//Manghnani M H, Yagi T. Properties of Earth and Planetary Materials at High Pressure and Temperature. Washington DC: American Geophysical Union, 1998: 119-128.
    [4] Knoche R, Webb S L, Rubie D C. Experimental determination of acoustic wave velocities at Earth mantle conditions using a multianvil press[J]. Phys Chem Earth, 1997, 22(1/2): 125-130. http://www.sciencedirect.com/science/article/pii/S0079194697000888
    [5] Cordier P, Rubie D C. Plastic deformation of minerals under extreme pressure using a multi-anvil apparatus[J]. Mater Sci Eng A, 2001, 309/310: 38-43. doi: 10.1016/S0921-5093(00)01795-0
    [6] Burns R C, Davis G. Growth of synthetic diamond[M]//Field J E. The Properties of Natural and Synthetic Diamond. London: Academic Press, 1992: 396-422.
    [7] Burns R C. The manufacture and application of de beers large crystal synthetic diamond[M]//Saito S, Fukunaga O, Yoshikawa M. Science and Technology of New Diamond. Tokyo: KTK Scientific Publishers, 1990.
    [8] Jaeger M D, Hyun S, Day A R, et al. Resistivity of boron-doped diamond microcrystals[J]. Appl Phys Lett, 1998, 72(19): 2445-2447. doi: 10.1063/1.121680
    [9] Sommer A P, Zhu D, Wiora M, et al. The top of the biomimetic triangle[J]. J Bionic Eng, 2008, 5(2): 92-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fsgcxb-e200802001
    [10] Sommer A P, Zhu D, Brühne K. Surface conductivity on hydrogen-terminated nanocrystalline diamond: Implication of ordered water layers[J]. Crystal Growth Des, 2007, 7(11): 2298-2301. doi: 10.1021/cg070610b
    [11] Strong H M, Wentorf R H. Growth of large, high-quality diamond crystals at General Electric[J]. Am J Phys, 1991, 59(11): 1005-1008. doi: 10.1119/1.16687
    [12] Smith C P, Bosshart G, Ponahlo J, et al. GE POL diamonds: Before and after[J]. Gems Gemol, 2000, 36(3): 192-215. doi: 10.5741/GEMS.36.3.192
    [13] Chalain J P, Fritsch E, Hänni H A. Identification of GE POL diamonds: A second step[J]. J Gemm, 2000, 27(2): 73-78. doi: 10.15506/JoG.2000.27.2.73
    [14] 郝兆印, 陈宇飞, 邹广田.人工合成金刚石[M].长春: 吉林大学出版社, 1996.

    Hao Z Y, Chen Y F, Zou G T. Synthetic Diamond[M]. Changchun: Jilin University Press, 1996. (in Chinese)
    [15] 王光祖, 翟小青, 罗明, 等.铰链式六面砧高压高温装置[J].金刚石与磨料磨具工程, 2000(6): 34-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgsymlmjgc200006011

    Wang G Z, Zhai X Q, Luo M, et al. High pressure and high tempesature hinged cubic press[J]. Diamond & Abrasives Engineering, 2000(6): 34-37. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgsymlmjgc200006011
    [16] 李志宏, 赵清国, 赵博, 等.发展中的中国六面顶压机和人造金刚石[J].磨料磨具通讯, 2007(1): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200703309034
    [17] Cao G Z, Schermer J J, van Enckevort W J P, et al. Growth of {100} textured diamond films by the addition of nitrogen[J]. J Appl Phys, 1996, 79(3): 1357-1364. doi: 10.1063/1.361033
    [18] Afzal A, Rego C A, Ahmed W, et al. HFCVD diamond grown with added nitrogen: Film characterization and gas-phase composition studies[J]. Diam Relat Mater, 1998, 7(7): 1033-1038. doi: 10.1016/S0925-9635(98)00148-4
    [19] 秦杰明. Fe100-xNix粉末触媒合成工业金刚石的研究[D].长春: 吉林大学, 2006.

    Qin J M. The research of industrial diamonds synthesized by Fe100-xNix powder catalyst[D]. Changchun: Jilin University, 2006. (in Chinese)
    [20] 贾晓鹏.超硬与多功能材料的高温高压合成与应用[C].第14届全国高压学术会议.北京, 2008.

    Jia X P. The synthesis and application of superhard and functional materials by high pressure and high temperature[C]. The 14th National Academic Conference on High Pressure. Beijing, 2008. (in Chinese)
    [21] 李尚升.优质Ⅱa型宝石级金刚石的高温高压合成及机理研究[D].长春: 吉林大学, 2009.

    Li S S. Growth of large high-quality type Ⅱa diamond crystals and research of the mechanism under HPHT[D]. Changchun: Jilin University, 2009. (in Chinese)
    [22] Zang C Y. Growth of large high-quality type Ⅱa diamond crystals and research of the mechanism[D]. Changchun: Jilin University, 2006. (in Chinese)
    [23] 樊建民, 王汝菊, 商玉生.动高压法合成金刚石微粉的抗氧化性能的研究[J].物理, 1983, 12(1): 29-30. http://www.cnki.com.cn/Article/CJFDTotal-WLZZ198301005.htm

    Fan J M, Wang R J, Shang Y S. Antioxidant characteristics of synthetic diamond by dynamic high pressure treatment[J]. Physics, 1983, 12(1): 29-30. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-WLZZ198301005.htm
    [24] Asmann M, Heberlein J, Pfender E. A review of diamond CVD utilizing halogenated precursors[J]. Diam Relat Mater, 1999, 8(1): 1-16. doi: 10.1016/S0925-9635(98)00365-3
    [25] Schwander M, Partes K. A review of diamond synthesis by CVD processes[J]. Diam Relat Mater, 2011, 20(9): 1287-1301. doi: 10.1016/j.diamond.2011.08.005
    [26] Heggie M I, Jungnickel G, Latham C D. The theory of CVD diamond growth[J]. Diam Relat Mater, 1996, 5(3/4/5): 236-241. http://www.sciencedirect.com/science/article/pii/0925963595004505
    [27] Gicquel A, Hassouni K, Silva F, et al. CVD diamond films: From growth to applications[J]. Curr Appl Phys, 2001, 1(6): 479-496. doi: 10.1016/S1567-1739(01)00061-X
    [28] Meng Y F, Yan C S, Lai J, et al. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing[J]. Proc Natl Acad Sci, 2008, 105(46): 17620-17625. doi: 10.1073/pnas.0808230105
    [29] Yan C S, Vohra Y K, Mao H K, et al. Very high growth rate chemical vapor deposition of single-crystal diamond[J]. Proc Natl Acad Sci, 2002, 99(20): 12523-12525. doi: 10.1073/pnas.152464799
    [30] Sung C M. A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis[J]. High Temp High Press, 1997, 29(3): 253-293. doi: 10.1068/htrt111
    [31] Liebermann R C. Multi-anvil, high pressure apparatus: A half-century of development and progress[J]. High Pressure Res, 2011, 31(4): 493-532. doi: 10.1080/08957959.2011.618698
    [32] Bridgman P W. Polymorphism, principally of the elements, up to 50 000 kg/cm2[J]. Phys Rev, 1935, 48(11): 893-906. doi: 10.1103/PhysRev.48.893
    [33] Hall H T. High pressures-temperatures apparatus[M]//Gschneidner K A. Metallurgy at High Pressures and High Temperatures. New York: Gordon and Breach Science Publishers, 1964.
    [34] Hall H T. Ultra-high-pressure, high-temperature apparatus: The "Belt"[J]. Rev Sci Instrum, 1960, 31(2): 125-131. doi: 10.1063/1.1716907
    [35] Циклис Д С.高压和超高压物理——化学研究技术[M].王殿儒, 罗明晖, 译.北京: 科学出版社, 1983.

    Циклис Д С. High Pressure and Ultra-High Pressure Physics: Chemistry Technology[M]. Translated by Wang D R, Luo M H. Beijing: Science Press, 1983. (in Chinese)
    [36] Hall H T. Anvil guide device for multiple-anvil high pressure apparatus[J]. Rev Sci Instrum, 1962, 33(11): 1278-1280. doi: 10.1063/1.1717748
    [37] Han Q G, Ma H A, Huang G F, et al. Hybrid-anvil: A suitable anvil for large volume cubic high pressure apparatus[J]. Rev Sci Instrum, 2009, 80(9): 096107. doi: 10.1063/1.3227239
    [38] Han Q G, Liu B, Hu M H, et al. Design an effective solution for commercial production and scientific research on Gem-quality, large, single-crystal diamond by high pressure and high temperature[J]. Cryst Growth Des, 2011, 11(4): 1000-1005. doi: 10.1021/cg100940b
    [39] Tange Y, Irifune T, Funakoshi K. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils[J]. High Pressure Res, 2008, 28(3): 245-254. doi: 10.1080/08957950802208936
    [40] Kawai N, Endo S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus[J]. Rev Sci Instrum, 1970, 41: 1178-1181. doi: 10.1063/1.1684753
    [41] Yelisseyev A, Nadolinny V, Feigelson B, et al. Spatial distribution of impurity defects in synthetic diamonds obtained by the BARS technology[J]. Diam Relat Mater, 1996, 5(10): 1113-1117. doi: 10.1016/0925-9635(96)00511-0
    [42] Reza A, Zhu H, Clarke C. High pressure-high temperature growth of diamond crystals using split sphere apparatus[J]. Diam Relat Mater, 2005, 14(11/12): 1916-1919. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3edf1a83d855a6d399be0e99dd6e302
  • 加载中
图(11)
计量
  • 文章访问数:  7699
  • HTML全文浏览量:  3352
  • PDF下载量:  286
出版历程
  • 收稿日期:  2014-09-06
  • 修回日期:  2014-11-12

目录

    /

    返回文章
    返回