磁驱动准等熵压缩铝物理量的数值分析

赵继波 孙承纬 罗斌强 王桂吉 蔡进涛 谭福利

赵继波, 孙承纬, 罗斌强, 王桂吉, 蔡进涛, 谭福利. 磁驱动准等熵压缩铝物理量的数值分析[J]. 高压物理学报, 2015, 29(4): 279-285. doi: 10.11858/gywlxb.2015.04.007
引用本文: 赵继波, 孙承纬, 罗斌强, 王桂吉, 蔡进涛, 谭福利. 磁驱动准等熵压缩铝物理量的数值分析[J]. 高压物理学报, 2015, 29(4): 279-285. doi: 10.11858/gywlxb.2015.04.007
ZHAO Ji-Bo, SUN Cheng-Wei, LUO Bin-Qiang, WANG Gui-Ji, CAI Jin-Tao, TAN Fu-Li. Numerical Analysis on Physical Quantities of Aluminum in Magnetically Driven Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 279-285. doi: 10.11858/gywlxb.2015.04.007
Citation: ZHAO Ji-Bo, SUN Cheng-Wei, LUO Bin-Qiang, WANG Gui-Ji, CAI Jin-Tao, TAN Fu-Li. Numerical Analysis on Physical Quantities of Aluminum in Magnetically Driven Isentropic Compression Experiments[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 279-285. doi: 10.11858/gywlxb.2015.04.007

磁驱动准等熵压缩铝物理量的数值分析

doi: 10.11858/gywlxb.2015.04.007
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金重点项目(11176002)
详细信息
    作者简介:

    赵继波(1977-),男,博士,副研究员,主要从事工程力学研究.E-mail: abcdef_z@163.com

  • 中图分类号: O347.1;O361.3

Numerical Analysis on Physical Quantities of Aluminum in Magnetically Driven Isentropic Compression Experiments

  • 摘要: 根据一维磁流体力学计算程序SSS/MHD的控制方程组,建立了磁驱动准等熵压缩台阶铝的计算模型,并对铝中的物理量变化过程进行了数值计算。在计算得到的电流和样品后界面粒子速度历程与实验测试结果相符合的基础上,分析了负载构型(样品)的动态电感变化、磁扩散规律,以及温度、密度、压力和速度等物理量的分布和变化规律。研究结果对深入认识磁驱动准等熵压缩物理过程和改进实验设计具有重要意义。

     

  • 图  等效电路

    Figure  1.  Equivalent circuit

    图  磁驱动准等熵压缩铝样品的计算模型

    Figure  2.  Calculated model of magnetically driven isentropic compression on aluminum sample

    图  放电电流变化曲线

    Figure  3.  Discharge current vs. time curve

    图  动态电感变化曲线

    Figure  4.  Dynamic inductance vs. time curve

    图  动态电感对电流的影响

    Figure  5.  Effect of dynamic inductance on current

    图  铝样品自由面粒子速度历程的计算结果与实验结果对比

    Figure  6.  Comparison of experimental and calculated free-surface particle velocities of the aluminium sample

    图  空腔内的磁感应强度变化

    Figure  7.  Variations of the magnetic induction in the cavity

    图  不同位置处磁感应强度的变化

    Figure  8.  Variations of the magnetic induction at different locations

    图  不同时刻的磁感应强度分布

    Figure  9.  Magnetic induction distributions at different times

    图  10  不同时刻的粒子速度分布

    Figure  10.  Velocity distributions at different times

    图  11  不同时刻的压力分布

    Figure  11.  Pressure distributions at different times

    图  12  不同时刻的温度分布

    Figure  12.  Temperature distributions at different times

    图  13  不同时刻的密度分布

    Figure  13.  Density distributions at different times

    图  14  不同时刻的固态质量分数

    Figure  14.  Solid phase mass fractions at different times

  • [1] 孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(2): 206-219. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201202008

    Sun C W, Zhao J H, Wang G J, et al. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-219. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201202008
    [2] Wang G J, Sun C W, Tan F L, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments[J]. Rev Sci Instrum, 2008, 79(5): 053904. doi: 10.1063/1.2920200
    [3] Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5): 1867-1874. doi: 10.1063/1.1557530
    [4] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [5] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [6] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Phys Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [7] Hall C A. Isentropic compression experiments on the Sandia Z accelerator[J]. Phys Plasmas, 2000, 7(5): 2069-2075. doi: 10.1063/1.874029
    [8] Frese M H. MACH2: A two-dimensional magnetohydrodynamic simulation code for complex experimental configurations, AMRC-R-874[R]. Albuquerque: Mission Research Corp, 1987.
    [9] 王刚华, 孙承纬, 赵剑衡, 等.磁驱动平面飞片的一维磁流体力学计算[J].爆炸与冲击, 2008, 28(3): 261-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200803011

    Wang G H, Sun C W, Zhao J H, et al. One-dimensional, magnetohydrodynamic simulations of magnetically driven flyer plates[J]. Explosion and Shock Waves, 2008, 28(3): 261-264. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200803011
    [10] 王桂吉, 蒋吉昊, 孙承纬, 等.磁驱动飞片的一维磁流体动力学数值研究[J].计算力学学报, 2008, 25(6): 776-781. http://www.cnki.com.cn/Article/CJFDTotal-JSJG200806006.htm

    Wang G J, Jiang J H, Sun C W, et al. One dimensional magneto-hydrodynamic simulation of magnetically driven flyer plates[J]. Chinese Journal of Computational Mechanics, 2008, 25(6): 776-781. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JSJG200806006.htm
    [11] 孙承纬.一维冲击波与爆轰波计算程序SSS[J].计算物理, 1986, 3(2): 143-154. http://www.cnki.com.cn/Article/CJFDTotal-JSWL198602001.htm

    Sun C W. SSS: A code computing one dimensional shock and detonation wave propagation[J]. Chinese Journal of Computational Physics, 1986, 3(2): 143-154. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JSWL198602001.htm
    [12] Burgess T J. Electrical resistivity model of metals[C]//Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa Fe, New Mexico, USA, 1986.
  • 加载中
图(14)
计量
  • 文章访问数:  6687
  • HTML全文浏览量:  2384
  • PDF下载量:  121
出版历程
  • 收稿日期:  2014-02-25
  • 修回日期:  2014-05-04

目录

    /

    返回文章
    返回