基于三维表征方法量化二维技术得到的高纯铝动态损伤分布误差

祁美兰 冉小霞 别必雄 范端 李平

祁美兰, 冉小霞, 别必雄, 范端, 李平. 基于三维表征方法量化二维技术得到的高纯铝动态损伤分布误差[J]. 高压物理学报, 2015, 29(4): 273-278. doi: 10.11858/gywlxb.2015.04.006
引用本文: 祁美兰, 冉小霞, 别必雄, 范端, 李平. 基于三维表征方法量化二维技术得到的高纯铝动态损伤分布误差[J]. 高压物理学报, 2015, 29(4): 273-278. doi: 10.11858/gywlxb.2015.04.006
QI Mei-Lan, RAN Xiao-Xia, BIE Bi-Xiong, FAN Duan, LI Ping. Quantify the Errors of Two-Dimensional Technique by Comparing to Three-Dimensional Measurement Method on Evaluating Damage in Shocked Ultrapure Aluminum[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 273-278. doi: 10.11858/gywlxb.2015.04.006
Citation: QI Mei-Lan, RAN Xiao-Xia, BIE Bi-Xiong, FAN Duan, LI Ping. Quantify the Errors of Two-Dimensional Technique by Comparing to Three-Dimensional Measurement Method on Evaluating Damage in Shocked Ultrapure Aluminum[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 273-278. doi: 10.11858/gywlxb.2015.04.006

基于三维表征方法量化二维技术得到的高纯铝动态损伤分布误差

doi: 10.11858/gywlxb.2015.04.006
基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(U1330111);国家自然科学基金(11172221,11072119);国防基础科研计划项目(B1520110003);国家留学基金
详细信息
    作者简介:

    祁美兰(1974-),女,博士,教授,主要从事高压物理与力学研究.E-mail: emmy_qi@163.com

    通讯作者:

    李平(1963-),男,博士,研究员,主要从事强冲击载荷作用下材料的动力学响应研究. E-mail: lp0703@263.net

  • 中图分类号: O347.3;O346.1

Quantify the Errors of Two-Dimensional Technique by Comparing to Three-Dimensional Measurement Method on Evaluating Damage in Shocked Ultrapure Aluminum

  • 摘要: 采用传统的二维(2D)金相分析方法估算受冲击作用后金属样品中孔洞的空间损伤分布时,通常未对误差进行量化。应用传统的二维金相分析方法和三维(3D)高分辨率X射线断层扫描方法,分别计算了不同受损程度的高纯铝样品中孔洞的空间损伤分布,比较和分析了两种方法的优、缺点,给出了二者之间的相对误差与飞片撞击速度之间的关系。研究结果可为材料损伤的空间分布统计提供有益的参考。

     

  • 图  实验测试回收装置原理图

    Figure  1.  Measurement and soft-recovery configuration of the experiment

    图  采用2D和3D方法获得的样品Al003b损伤度

    Figure  2.  Damage distribution obtained by 2D and 3D method for sample Al003b

    图  3D断层摄影实验过程

    Figure  3.  Process of 3D tomography method

    图  2D和3D统计方法之间的相对误差与冲击压力的关系

    Figure  4.  Relationship of the absolute value of relative error between 2D and 3D method and the shock pressure

    图  样品Al010b中孔洞的3D分布

    Figure  5.  3D void distribution in shock-recovered pure Al sample Al010b

    图  样品Al006b中孔洞的3D分布

    Figure  6.  3D void distribution in shock-recovered pure Al sample Al006b

    表  1  实验参数及通过2D和3D方法得到的损伤峰值

    Table  1.   Experimental parameters and damage (voids) results obtained by 2D and 3D methods

    Exp.No. df/(mm) ds/(mm) v/(m/s) tt/(μs) p/(GPa) Dmax, 2D Dmax, 3D δ/(%) |δ|/(%)
    Al010b 48.0 48.0 149.6 6 1.01 0.040 0.011 264 264
    A1022b 38.0 38.0 170.0 6 1.31 0.160 0.267 -40 40
    A1006b 48.0 48.0 196.9 6 1.53 0.210 0.274 -23 23
    A1007b 48.0 48.0 201.0 6 1.55 0.260 0.367 -29 29
    A1005b 48.0 48.0 215.4 6 1.67 0.280 0.317 -12 12
    Al003b 48.0 48.0 236.3 6 1.80 0.470 0.400 18 18
    Note:Dmax, 2D and Dmax, 3D are the peak damage obtained by 2D and 3D methods, respectively; the relative error δ=(Dmax, 2D-Dmax, 3D)/Dmax, 3D
    下载: 导出CSV
  • [1] Grady D E. The spall strength of condensed matter[J]. J Mech Phys Solids, 1988, 36(3): 353-384. doi: 10.1016/0022-5096(88)90015-4
    [2] Chen X, Asay J R, Dwivedi S K, et al. Spall behavior of aluminum with varying microstructures[J]. J Appl Phys, 2006, 99(2): 023528. doi: 10.1063/1.2165409
    [3] Trivedi P B, Asay J R, Gupta Y M, et al. Influence of grain size on the tensile response of aluminum under plate-impact loading[J]. J Appl Phys, 2007, 102(8): 083513. doi: 10.1063/1.2798497
    [4] Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. J Appl Phys, 2011, 110(3): 033513. doi: 10.1063/1.3607294
    [5] Peralta P, Digiacomo S, Hashemian S, et al. Characterization of incipient spall damage in shocked copper multicrystals[J]. Int J Damage Mech, 2009, 18(4): 393-413. doi: 10.1177/1056789508097550
    [6] Schwartz A J, Cazamias J U, Fiske P S, et al. Grain size and pressure effects on spall strength in copper[C]//Furnish M D, Thadhani N N, Horie Y. Shock Compression of Condensed Matter-2001. Atlanta, Georgia: American Institute of Physics, 2002: 491-494.
    [7] 贺红亮.关于自由面速度剖面解读层裂问题的几点商榷[J].高压物理学报, 2009, 23(1): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200901001

    He H L. Discussion on the spallation behavior resolved by free-surface velocity profile[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 1-8. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200901001
    [8] Cerreta E K, Escobedo J P, Perez-Bergquist A, et al. Early stage dynamic damage and the role of grain boundary type[J]. Scr Mater, 2012, 66(9): 638-641. doi: 10.1016/j.scriptamat.2012.01.051
    [9] Fan D, Qi M L, He H L. Damage distribution of high purity aluminum under the impact loading[J]. Adv Mater Res, 2010, 160/161/162: 1001-1005. http://www.scientific.net/AMR.160-162.1001
    [10] Seaman L, Curran D R, Crewdson R C. Transformation of observed crack traces on a section to true crack density for fracture calculations[J]. J Appl Phys, 1978, 49(10): 5221-5229. doi: 10.1063/1.324419
    [11] 祁美兰, 贺红亮.延性金属材料中损伤分布的统计方法[J].武汉理工大学学报, 2008, 30(8): 23-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb200808007

    Qi M L, He H L. Statistic analysis of damage distribution in ductile metalsunder dynamic impact[J]. Journal of Wuhan University of Technology, 2008, 30(8): 23-26. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whgydxxb200808007
    [12] Tollier L, Fabbro R, Bartnicki E. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. Ⅰ. Laser-shock characterization[J]. J Appl Phys, 1998, 83(3): 1224-1230. doi: 10.1063/1.366819
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  6296
  • HTML全文浏览量:  2018
  • PDF下载量:  181
出版历程
  • 收稿日期:  2014-03-28
  • 修回日期:  2014-04-14

目录

    /

    返回文章
    返回