碳化硅-金刚石超硬复合材料的弹性性质

王志刚 徐亮 李绪海 王海阔 贺端威 孟川民

王志刚, 徐亮, 李绪海, 王海阔, 贺端威, 孟川民. 碳化硅-金刚石超硬复合材料的弹性性质[J]. 高压物理学报, 2015, 29(4): 263-267. doi: 10.11858/gywlxb.2015.04.004
引用本文: 王志刚, 徐亮, 李绪海, 王海阔, 贺端威, 孟川民. 碳化硅-金刚石超硬复合材料的弹性性质[J]. 高压物理学报, 2015, 29(4): 263-267. doi: 10.11858/gywlxb.2015.04.004
WANG Zhi-Gang, XU Liang, LI Xu-Hai, WANG Hai-Kuo, HE Duan-Wei, MENG Chuan-Min. Elastic Property of SiC-Diamond Composite under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 263-267. doi: 10.11858/gywlxb.2015.04.004
Citation: WANG Zhi-Gang, XU Liang, LI Xu-Hai, WANG Hai-Kuo, HE Duan-Wei, MENG Chuan-Min. Elastic Property of SiC-Diamond Composite under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(4): 263-267. doi: 10.11858/gywlxb.2015.04.004

碳化硅-金刚石超硬复合材料的弹性性质

doi: 10.11858/gywlxb.2015.04.004
详细信息
    作者简介:

    王志刚(1978-), 博士, 主要从事静态高压实验技术及物性研究.E-mail:wangzg@caep.cn

    通讯作者:

    孟川民(1973-), 博士, 副研究员, 主要从事高压材料研究.E-mail:mcm901570@126.com

  • 中图分类号: O521.2

Elastic Property of SiC-Diamond Composite under Hydrostatic Pressure

  • 摘要: 在六面顶压机装置上,采用完全静水压声速测量技术,同时测量了碳化硅-金刚石复合材料在0~4.3 GPa压力范围内的纵波声速(vp)和横波声速(vs),获得了其弹性模量与压力的关系。研究发现:当压力小于1.4 GPa时,由于材料内部微孔隙闭合,材料声速随压力的升高而增大;随着压力的继续增加,微孔隙闭合完毕,声速趋于稳定值。常压下,碳化硅-金刚石复合材料的剪切模量高于体积模量;而高压下微孔隙对纵波声速的影响明显大于横波声速,导致体积模量在约1.4 GPa时超过剪切模量。在1.4~4.3 GPa压力下,碳化硅-金刚石复合材料的体积模量和剪切模量分别约为360和350 GPa。

     

  • 图  碳化硅-金刚石复合材料的XRD谱

    Figure  1.  XRD pattern of SiC-diamond composite

    图  碳化硅-金刚石复合材料的SEM图像

    Figure  2.  SEM micrograph of SiC-diamond composite

    图  样品组装剖面示意图

    Figure  3.  Schematic cross section of the sample assembly

    图  纵波和横波超声信号

    Figure  4.  Ultrasonic signal of longitude and shear waves

    图  碳化硅-金刚石复合材料的声速随压力的变化

    Figure  5.  Variation of sound velocity with pressure for the SiC-diamond composite

    图  碳化硅-金刚石复合材料的模量随压力的变化

    Figure  6.  Variation of modulus with pressure for the SiC-diamond composite

  • [1] Miess D, Rai G. Fracture toughness and thermal resistance of polycrystalline diamond compacts[J]. Mater Sci Eng A, 1996, 209(1/2): 270-276. http://www.sciencedirect.com/science/article/pii/0921509395101055
    [2] Voronin G A, Zerda T W, Gubicza J, et al. Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique[J]. J Mater Res, 2004, 19(9): 2703-2707. doi: 10.1557/JMR.2004.0345
    [3] Ekimov E A, Gromnitskaya E L, Gierlotka S, et al. Mechanical behavior and microstructure of nanodiamond-based composite materials[J]. J Mater Sci Lett, 2002, 21(21): 1699-1702. doi: 10.1023/A:1020889129195
    [4] Qian J, Voronin G, Zerda T W, et al. High-pressure, high-temperature sintering of diamond-SiC composites by ball-milled diamond-Si mixtures[J]. J Mater Res, 2002, 17(8): 2153-2160. http://adsabs.harvard.edu/abs/2002JMatR..17.2153Q
    [5] Ko Y S, Tsurumi T, Fukunaga O, et al. High pressure sintering of diamond-SiC composite[J]. J Mater Res, 2001, 36(2): 469-475. doi: 10.1023/A%3A1004840915607
    [6] Larsson P, Axén N, Ekström T, et al. Wear of a new type of diamond composite[J]. Int J Refract Met Hard Mater, 1999, 17(6): 453-460. doi: 10.1016/S0263-4368(00)00006-8
    [7] Palosz B, Stelmakh S, Grzanka E, et al. Origin of macrostrains and microstrains in diamond-SiC nanocomposites based on the core-shell model[J]. J Appl Phys, 2007, 102(7): 074303. doi: 10.1063/1.2785025
    [8] Qian J, Zerda T W, He D, et al. Micron diamond composites with nanocrystalline silicon carbide bonding[J]. J Mater Res, 2003, 18(5): 1173-1178. doi: 10.1557/JMR.2003.0161
    [9] 王海阔.基于国产六面顶压机增压装置的压力产生极限扩展与应用[D].成都: 四川大学, 2013: 114-115.

    Wang H K. Development and application of pressure generation techniques based on hinge-type cubic press[D]. Chengdu: Sichuan University, 2013: 114-115. (in Chinese)
    [10] Wang Z G, Liu Y G, Bi Y, et al. Hydrostatic pressure and temperature calibration based on phase diagram of bismuth[J]. High Pressure Res, 2012, 32(2): 167-175. doi: 10.1080/08957959.2012.677950
    [11] 陈志, 杜建国, 周文戈, 等. 0.5-4.0 GPa、100-300 ℃条件下辉长岩弹性波速及衰减特征[J].高压物理学报, 2009, 23(5): 338-344. http://www.cqvip.com/QK/96553X/20095/31952407.html

    Chen Z, Du J G, Zhou W G, et al. Wave velocity and attenuation characteristics of gabbro at 100-300 ℃ and 0.5-4.0 GPa[J]. Chinese Journal of High Pressure Physics, 2009, 23(5): 338-344. (in Chinese) http://www.cqvip.com/QK/96553X/20095/31952407.html
    [12] Zhao Y S, Qian J, Daemen L L, et al. Enhancement of fracture toughness in nanostructured diamond-SiC composites[J]. Appl Phys Lett, 2004, 84(8): 1356-1358. doi: 10.1063/1.1650556
  • 加载中
图(6)
计量
  • 文章访问数:  6678
  • HTML全文浏览量:  2039
  • PDF下载量:  266
出版历程
  • 收稿日期:  2014-01-24
  • 修回日期:  2014-04-01

目录

    /

    返回文章
    返回